Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Environ Pollut ; 316(Pt 1): 120555, 2023 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-36332709

RESUMO

Due to anthropogenic activities, heavy metals are discharged into the hydrosphere and deposit onto the sediment. Heavy metals remobilize through physical disturbance and change in environmental conditions, posing a risk to environments and human health. Among several remediation methods, active layer capping is considered to be more feasible due to its financial and technical advantages; however, its long-term effects remain unknown. To overcome this problem, this work applied a novel, recoverable amendment, sulfurized magnetic biochar (SMBC), to remediate multiple heavy metal (Cu, Ni, Zn, Cr, Hg, and MeHg) contaminated sediment. Physiochemical characterization shows magnetite (Fe3O4) crystalline in both magnetic biochar (MBC) and SMBC, with such characteristics resulting in a greater surface area (324.9 and 346.3 m2/g) than BC (39.6 m2/g) and SBC (65.0 m2/g). FeS crystalline was also observed in SMBC, which plays an important role in controlling heavy metal release from sediment. Microcosm experiments indicated the effectiveness of SMBC in lowering aquatic Cu, Ni, Zn, Hg, and MeHg releases was significantly greater than the other three biochar materials. Notably, the recovery of SMBC by magnetism was 87%, demonstrating the exceptional recoverability of SMBC from seawater and sediment. Based on its robust capability in lowering Cu, Ni, Zn, Hg, and MeHg release and excellent recoverability from seawater and sediment, this technique represents a practical alternative to conventional approaches for heavy metal immobilization from sediment.


Assuntos
Mercúrio , Metais Pesados , Poluentes Químicos da Água , Humanos , Carvão Vegetal/química , Fenômenos Magnéticos , Metais Pesados/química , Poluentes Químicos da Água/análise , Sedimentos Geológicos
2.
Sci Total Environ ; 784: 147240, 2021 Aug 25.
Artigo em Inglês | MEDLINE | ID: mdl-34088046

RESUMO

Due to public health threats resulting from mercury (Hg) and its distribution in the food chain, global restrictions have been placed on Hg use and emissions. Biochar is a porous, carbonaceous adsorbent typically derived from waste biomass or organic matter, making it an eco-friendly material for aqueous mercury (Hg(II)) control. Functionalization of biochar can improve performance in pollution control applications. In this work, carbonization, magnetization, and sulfurization of biochar were combined into a single heating step to prepare sulfurized magnetic biochar (SMBC) for Hg(II) removal from water. Results indicate that SMBC prepared at 600 °C adsorbed 8.93 mg/g Hg(II), more than materials prepared at 400, 500, 700, 800, and 900 °C. Additionally, Hg(II) adsorption onto SMBC was 53.0% and 11.5% greater than onto magnetic biochar (MBC) and biochar (BC), respectively. Hg(II) adsorption is shown to be favorable in acidic conditions (pH 3.5-5), thermodynamically spontaneous, and endothermic. Adsorption results fit the pseudo-second-order (R2 = 0.990 and the sum of squared error (SSE) = 5.382) and external mass transfer (R2 = 0.971 and SSE = 9.422) models. The partitioning coefficients were 4.964 mg/g/µM in freshwater, 0.176 mg/g/µM in estuary water, and 0.275 mg/g/µM in seawater, highlighting the importance of salinity in environmental remediation applications. In summary, SMBC can be readily prepared with minimal processing steps. The product is a robust adsorbent for Hg(II), and it can potentially be applied to remediate contaminated water/sediment/soil in the future.

3.
Sci Total Environ ; 708: 135068, 2020 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-31780157

RESUMO

In-situ thin layer capping (TLC) is a promising sediment remediation approach that has been shown effective in immobilizing contaminants from releasing to natural biotas and human beings. This research intended to comprehend the effectiveness of Hg immobilization by TLC under turbation condition via a microcosm study. Three TLC caps with different activated carbon (AC)/clay combinations were applied to actual Hg-contaminated estuary sediment (76.0 ± 2.6 mg-Hg/kg). The caps with AC (3%) + bentonite (3%) and AC (3%) + kaolin (3%) were efficient in reducing both total mercury (THg) and methylmercury (MeHg) concentrations in overlying water by 75-95% and 64-98%, respectively, in the later stage of 75-d operation. In contrast, the AC (3%) + montmorillonite (3%) cap did not show a significant reduction on THg and MeHg in the overlying water, probably due to the unstable, suspension property of montmorillonite. The stable caps showed higher resistance to Hg breakthrough under occasional turbation events; however, a labile cap appeared to have dramatic Hg breakthrough when turbation occurred. It is therefore essential to note that with unstable caps, turbation events may result in unwanted secondary resuspension of contaminants.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...