Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Materials (Basel) ; 11(4)2018 Mar 31.
Artigo em Inglês | MEDLINE | ID: mdl-29614736

RESUMO

We present a simple design for a broadband tunable terahertz (THz) metamaterial absorber (MMA) consisting of a complementary cross-oval-shaped graphene (CCOSG) structure and dielectric substrate placed on a continuous metal film. Both numerical simulation and theoretical calculation results indicate that the absorbance is greater than 80% from 1.2 to 1.8 THz, and the corresponding relative bandwidth is up to 40%. Simulated electric field and power loss density distributions reveal that the broadband absorption mainly originates from the excitation of continuous surface plasmon resonance (SPR) on the CCOSG. In addition, the MMA is polarization-insensitive for both transverse-electric (TE) and transverse-magnetic (TM) modes due to the geometry rotational symmetry of the unit-cell structure. Furthermore, the broadband absorption properties of the designed MMA can be effectively tunable by varying the geometric parameters of the unit-cell and chemical potential of graphene. Our results may find promising applications in sensing, detecting, and optoelectronic-related devices.

2.
Materials (Basel) ; 10(11)2017 Oct 27.
Artigo em Inglês | MEDLINE | ID: mdl-29077036

RESUMO

We design an ultra-thin multi-band polarization-insensitive metamaterial absorber (MMA) using a single circular sector resonator (CSR) structure in the microwave region. Simulated results show that the proposed MMA has three distinctive absorption peaks at 3.35 GHz, 8.65 GHz, and 12.44 GHz, with absorbance of 98.8%, 99.7%, and 98.3%, respectively, which agree well with an experiment. Simulated surface current distributions of the unit-cell structure reveal that the triple-band absorption mainly originates from multiple-harmonic magnetic resonance. The proposed triple-band MMA can remain at a high absorption level for all polarization of both transverse-electric (TE) and transverse-magnetic (TM) modes under normal incidence. Moreover, by further optimizing the geometric parameters of the CSRs, four-band and five-band MMAs can also be obtained. Thus, our design will have potential application in detection, sensing, and stealth technology.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...