Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 73
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Hortic Res ; 11(1): uhad251, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38304330

RESUMO

Botrytis cinerea is one of the most destructive pathogens in strawberry cultivation. Successful infection by B. cinerea requires releasing a large number of effectors that interfere with the plant's immune system. One of the effectors required by B. cinerea for optimal virulence is the secreted protein BcXYG1, which is thought to associate with proteins near the plasma membrane of the host plant to induce necrosis. However, the host proteins that associate with BcXYG1 at the plasma membrane are currently unknown. We found that BcXYG1 binds to FvBPL4 and FvACD11 at the plasma membrane. Both FvBPL4 and FvACD11 are negative regulators of plant immunity in strawberry. Our results demonstrate that degradation of FvBPL4 by BcXYG1 promotes disease resistance while stabilization of FvACD11 by BcXYG1 suppresses the immune response. These findings suggest that BcXYG1 suppresses plant immunity and promotes B. cinerea infection by regulating FvBPL4 and FvACD11 protein levels.

2.
Plant J ; 118(3): 717-730, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38213282

RESUMO

Cryptotaenia japonica, a traditional medicinal and edible vegetable crops, is well-known for its attractive flavors and health care functions. As a member of the Apiaceae family, the evolutionary trajectory and biological properties of C. japonica are not clearly understood. Here, we first reported a high-quality genome of C. japonica with a total length of 427 Mb and N50 length 50.76 Mb, was anchored into 10 chromosomes, which confirmed by chromosome (cytogenetic) analysis. Comparative genomic analysis revealed C. japonica exhibited low genetic redundancy, contained a higher percentage of single-cope gene families. The homoeologous blocks, Ks, and collinearity were analyzed among Apiaceae species contributed to the evidence that C. japonica lacked recent species-specific WGD. Through comparative genomic and transcriptomic analyses of Apiaceae species, we revealed the genetic basis of the production of anthocyanins. Several structural genes encoding enzymes and transcription factor genes of the anthocyanin biosynthesis pathway in different species were also identified. The CjANSa, CjDFRb, and CjF3H gene might be the target of Cjaponica_2.2062 (bHLH) and Cjaponica_1.3743 (MYB). Our findings provided a high-quality reference genome of C. japonica and offered new insights into Apiaceae evolution and biology.


Assuntos
Antocianinas , Apiaceae , Genoma de Planta , Genômica , Antocianinas/biossíntese , Antocianinas/genética , Antocianinas/metabolismo , Genoma de Planta/genética , Apiaceae/genética , Apiaceae/metabolismo , Filogenia , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Regulação da Expressão Gênica de Plantas , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Cromossomos de Plantas/genética
3.
Hortic Res ; 10(12): uhad225, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38143486

RESUMO

Necrotrophic pathogens replicate massively upon colonizing plants, causing large-scale wilting and death of plant tissues. Understanding both mechanisms of pathogen invasion and host response processes prior to symptom appearance and their key regulatory networks is therefore important for defense against pathogen attack. Here, we investigated the mechanisms of interaction between woodland strawberry (Fragaria vesca) leaves and gray mold pathogen (Botrytis cinerea) at 14 infection time points during the first 12 hours of the infection period using a dense, high-resolution time series dual transcriptomic analysis, characterizing the arms race between strawberry F. vesca and B. cinerea before the appearance of localized lesions. Strawberry leaves rapidly initiated strong systemic defenses at the first sign of external stimulation and showed lower levels of transcriptomic change later in the infection process. Unlike the host plants, B. cinerea showed larger-scale transcriptomic changes that persisted throughout the infection process. Weighted gene co-expression network analysis identified highly correlated genes in 32 gene expression modules between B. cinerea and strawberry. Yeast two-hybrid and bimolecular fluorescence complementation assays revealed that the disease response protein FvRLP2 from woodland strawberry interacted with the cell death inducing proteins BcXYG1 and BcPG3 from B. cinerea. Overexpression of FvRLP2 in both strawberry and Arabidopsis inhibited B. cinerea infection, confirming these genes' respective functions. These findings shed light on the arms race process by which B. cinerea invades host plants and strawberry to defend against pathogen infection.

4.
BMC Plant Biol ; 23(1): 265, 2023 May 19.
Artigo em Inglês | MEDLINE | ID: mdl-37202746

RESUMO

BACKGROUND: The plant hormone auxin is widely involved in plant growth, development, and morphogenesis, and the TIR1/AFB and AUX/IAA proteins are closely linked to rapid auxin response and signal transmission. However, their evolutionary history, historical patterns of expansion and contraction, and changes in interaction relationships are still unknown. RESULTS: Here, we analyzed the gene duplications, interactions, and expression patterns of TIR1/AFBs and AUX/IAAs to understand their underlying mechanisms of evolution. The ratios of TIR1/AFBs to AUX/IAAs range from 4:2 in Physcomitrium patens to 6:29 in Arabidopsis thaliana and 3:16 in Fragaria vesca. Whole-genome duplication (WGD) and tandem duplication have contributed to the expansion of the AUX/IAA gene family, but numerous TIR1/AFB gene duplicates were lost after WGD. We further analyzed the expression profiles of TIR1/AFBs and AUX/IAAs in different tissue parts of Physcomitrium patens, Selaginella moellendorffii, Arabidopsis thaliana and Fragaria vesca, and found that TIR1/AFBs and AUX/IAAs were highly expressed in all tissues in P. patens, S. moellendorffii. In A. thaliana and F. vesca, TIR1/AFBs maintained the same expression pattern as the ancient plants with high expression in all tissue parts, while AUX/IAAs appeared tissue-specific expression. In F. vesca, 11 AUX/IAAs interacted with TIR1/AFBs with different interaction strengths, and the functional specificity of AUX/IAAs was related to their ability to bind TIR1/AFBs, thus promoting the development of specific higher plant organs. Verification of the interactions among TIR1/AFBs and AUX/IAAs in Marchantia polymorpha and F. vesca also showed that the regulation of AUX/IAA members by TIR1/AFBs became more refined over the course of plant evolution. CONCLUSIONS: Our results indicate that specific interactions and specific gene expression patterns both contributed to the functional diversification of TIR1/AFBs and AUX/IAAs.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Proteínas F-Box , Arabidopsis/genética , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Proteínas F-Box/genética , Ácidos Indolacéticos/metabolismo , Morfogênese/genética , Regulação da Expressão Gênica de Plantas , Receptores de Superfície Celular/genética
5.
Hortic Res ; 10(4): uhad027, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-37090094

RESUMO

Fragaria vesca, commonly known as wild or woodland strawberry, is the most widely distributed diploid Fragaria species and is native to Europe and Asia. Because of its small plant size, low heterozygosity, and relative ease of genetic transformation, F. vesca has been a model plant for fruit research since the publication of its Illumina-based genome in 2011. However, its genomic contribution to octoploid cultivated strawberry remains a long-standing question. Here, we de novo assembled and annotated a telomere-to-telomere, gap-free genome of F. vesca 'Hawaii 4', with all seven chromosomes assembled into single contigs, providing the highest completeness and assembly quality to date. The gap-free genome is 220 785 082 bp in length and encodes 36 173 protein-coding gene models, including 1153 newly annotated genes. All 14 telomeres and seven centromeres were annotated within the seven chromosomes. Among the three previously recognized wild diploid strawberry ancestors, F. vesca, F. iinumae, and F. viridis, phylogenomic analysis showed that F. vesca and F. viridis are the ancestors of the cultivated octoploid strawberry F. × ananassa, and F. vesca is its closest relative. Three subgenomes of F. × ananassa belong to the F. vesca group, and one is sister to F. viridis. We anticipate that this high-quality, telomere-to-telomere, gap-free F. vesca genome, combined with our phylogenomic inference of the origin of cultivated strawberry, will provide insight into the genomic evolution of Fragaria and facilitate strawberry genetics and molecular breeding.

6.
BMC Plant Biol ; 22(1): 569, 2022 Dec 06.
Artigo em Inglês | MEDLINE | ID: mdl-36471247

RESUMO

BACKGROUND: GRAS genes formed one of the important transcription factor gene families in plants, had been identified in several plant species. The family genes were involved in plant growth, development, and stress resistance. However, the comparative analysis of GRAS genes in Rosaceae species was insufficient. RESULTS: In this study, a total of 333 GRAS genes were identified in six Rosaceae species, including 51 in strawberry (Fragaria vesca), 78 in apple (Malus domestica), 41 in black raspberry (Rubus occidentalis), 59 in European pear (Pyrus communis), 56 in Chinese rose (Rosa chinensis), and 48 in peach (Prunus persica). Motif analysis showed the VHIID domain, SAW motif, LR I region, and PFYRE motif were considerably conserved in the six Rosaceae species. All GRAS genes were divided into 10 subgroups according to phylogenetic analysis. A total of 15 species-specific duplicated clades and 3 lineage-specific duplicated clades were identified in six Rosaceae species. Chromosomal localization presented the uneven distribution of GRAS genes in six Rosaceae species. Duplication events contributed to the expression of the GRAS genes, and Ka/Ks analysis suggested the purification selection as a major force during the evolution process in six Rosaceae species. Cis-acting elements and GO analysis revealed that most of the GRAS genes were associated with various environmental stress in six Rosaceae species. Coexpression network analysis showed the mutual regulatory relationship between GRAS and bZIP genes, suggesting the ability of the GRAS gene to regulate abiotic stress in woodland strawberry. The expression pattern elucidated the transcriptional levels of FvGRAS genes in various tissues and the drought and salt stress in woodland strawberry, which were verified by RT-qPCR analysis. CONCLUSIONS: The evolution and functional analysis of GRAS genes provided insights into the further understanding of GRAS genes on the abiotic stress of Rosaceae species.


Assuntos
Fragaria , Malus , Pyrus , Rosaceae , Rosaceae/genética , Rosaceae/metabolismo , Filogenia , Genoma de Planta , Evolução Molecular , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Pyrus/genética , Pyrus/metabolismo , Fragaria/genética , Fragaria/metabolismo , Malus/genética , Malus/metabolismo
7.
Hortic Res ; 2022 Feb 19.
Artigo em Inglês | MEDLINE | ID: mdl-35184190

RESUMO

Arbuscular mycorrhizal symbiosis (AMS) is widespread mutualistic association between plants and fungi, which plays an essential role in nutrient exchange, enhancement in plant stress resistance, development of host, and ecosystem sustainability. Previous studies have shown that plant small secreted proteins (SSPs) are involved in beneficial symbiotic interactions. However, the role of SSPs in the evolution of AMS has not been well studied yet. In this study, we performed computational analysis of SSPs in 60 plant species and identified three AMS-specific ortholog groups containing SSPs only from at least 30% of the AMS species in this study and three AMS-preferential ortholog groups containing SSPs from both AMS and non-AMS species, with AMS species containing significantly more SSPs than non-AMS species. We found that independent lineages of monocot and eudicot plants contained genes in the AMS-specific ortholog groups and had significant expansion in the AMS-preferential ortholog groups. Also, two AMS-preferential ortholog groups showed convergent changes, between monocot and eudicot species, in gene expression in response to arbuscular mycorrhizal fungus Rhizophagus irregularis. Furthermore, conserved cis-elements were identified in the promoter regions of the genes showing convergent gene expression. We found that the SSPs, and their closely related homologs, in each of three AMS-preferential ortholog groups, had some local variations in the protein structural alignment. We also identified genes co-expressed with the Populus trichocarpa SSP genes in the AMS-preferential ortholog groups. This first plant kingdom-wide analysis on SSP provides insights on plant-AMS convergent evolution with specific SSP gene expression and local diversification of protein structures.

8.
Hortic Res ; 2022 Jan 19.
Artigo em Inglês | MEDLINE | ID: mdl-35043166

RESUMO

Pathogen invasion leads to fast, local-to-systemic signal transduction that initiates plant defense responses. Despite tremendous progress in past decades, aspects of this process remain unknown, such as which cell types respond first and how signals are transferred among cell types. Here, we used single-cell RNA-seq of more than 50 000 single cells to document the gene expression landscape in leaves of woodland strawberry during infection by Botrytis cinerea and identify major cell types. We constructed a single-cell atlas and characterized the distinct gene expression patterns of hydathode, epidermal, and mesophyll cells during the incubation period of B. cinerea infection. Pseudotime trajectory analysis revealed signals of the transition from normal functioning to defense response in epidermal and mesophyll cells upon B. cinerea infection. Genes related to disease resistance showed different expression patterns among cell types: disease resistance-related genes and gene encoding transcription factors were highly expressed in individual cell types and interacted to trigger plant systemic immunity to B. cinerea. This is the first report to document the of single-cell transcriptional landscape of the plant pathogenic invasion process, it provides new insights into the wholistic dynamics of host-pathogen interactions and can guide the identification of genes and the formulation of strategies for resistant cultivar development.

9.
Mol Genet Genomics ; 297(1): 263-276, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-35031863

RESUMO

In this study, genome-wide identification, phylogenetic relationships, duplication time and selective pressure of the NBS-LRR genes, an important group of plant disease-resistance genes (R genes), were performed to uncover their genetic evolutionary patterns in the six Prunus species. A total of 1946 NBS-LRR genes were identified; specifically, 589, 361, 284, 281, 318, and 113 were identified in Prunus yedoensis, P. domestica, P. avium, P. dulcis, P. persica and P. yedoensis var. nudiflora, respectively. Two NBS-LRR gene subclasses, TIR-NBS-LRR (TNL) and non-TIR-NBS-LRR (non-TNL), were also discovered. In total, 435 TNL and 1511 non-TNL genes were identified and could be classified into 30/55/75 and 103/158/191 multi-gene families, respectively, according to three different criteria. Higher Ks and Ka/Ks values were detected in TNL gene families than in non-TNL gene families. These results indicated that the TNL genes had more members involved in relatively ancient duplications and were affected by stronger selection pressure than the non-TNL genes. In general, the NBS-LRR genes were shaped by species-specific duplications, and lineage-specific duplications occurred at recent and relatively ancient periods among the six Prunus species. Therefore, different duplicated copies of NBS-LRRs can resist specific pathogens and will provide an R-gene library for resistance breeding in Prunus species.


Assuntos
Resistência à Doença/genética , Duplicação Gênica , Proteínas de Repetições Ricas em Leucina/genética , Prunus/genética , Evolução Molecular , Regulação da Expressão Gênica de Plantas , Genes de Plantas , Especiação Genética , Genoma de Planta , Família Multigênica , Filogenia , Doenças das Plantas/genética , Doenças das Plantas/imunologia , Proteínas de Plantas/genética , Prunus/classificação , Especificidade da Espécie , Fatores de Tempo
10.
Int J Genomics ; 2021: 4066394, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34961840

RESUMO

Genes encoding VQ motif-containing (VQ) transcriptional regulators and WRKY transcription factors can participate separately or jointly in plant growth, development, and abiotic and biotic stress responses. In this study, 222 VQ and 645 WRKY genes were identified in six Prunus species. Based on phylogenetic tree topologies, the VQ and WRKY genes were classified into 13 and 32 clades, respectively. Therefore, at least 13 VQ gene copies and 32 WRKY gene copies were present in the genome of the common ancestor of the six Prunus species. Similar small Ks value peaks for the VQ and WRKY genes suggest that the two gene families underwent recent duplications in the six studied species. The majority of the Ka/Ks ratios were less than 1, implying that most of the VQ and WRKY genes had undergone purifying selection. Pi values were significantly higher in the VQ genes than in the WRKY genes, and the VQ genes therefore exhibited greater nucleotide diversity in the six species. Forty-one of the Prunus VQ genes were predicted to interact with 44 of the WRKY genes, and the expression levels of some predicted VQ-WRKY interacting pairs were significantly correlated. Differential expression patterns of the VQ and WRKY genes suggested that some might be involved in regulating aphid resistance in P. persica and fruit development in P. avium.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA