Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Environ Pollut ; 358: 124433, 2024 Jun 24.
Artigo em Inglês | MEDLINE | ID: mdl-38925216

RESUMO

Wastewater treatment plants (WWTPs) are considered a significant microplastic discharge source. To evaluate the amount and characteristics of microplastics discharged from WWTPs in South Korea, we selected 22 municipal WWTPs nationally and investigated microplastics at each treatment stage. The mean microplastic removal efficiency by WWTPs was >99%, and most of the microplastics were removed by sedimentation with the second clarifier during wastewater treatment. Consequently, the microplastic removal efficiency of WWTPs did not significantly differ from that of the adopted wastewater treatment technology because a second clarifier was applied in most WWTPs. However, for WWTPs operating a tertiary treatment process, the removal efficiency was enhanced compared with that of WWTPs discharging after a second clarifier. Although the microplastic removal efficiency was high by WWTP, the discharge contribution to the water environment could not be ignored because of the amount of treated wastewater, resulting in an increase of 5.8-270.9 items/m3 of microplastics in the receiving water. The characteristics of microplastics in WWTPs, including their components, shape, and size, were also evaluated. The most detected components included polytetrafluoroethylene and polyester. Most microplastics detected were categorized as fragments and fibers, while other types were hardly detected. The size of more than 70% of the microplastics detected in WWTPs was under 300 µm, implying that the size of microplastics required to control in WWTPs was much smaller than the defined size of microplastics. An evaluation of the correlation between other pollution factors and microplastic abundance did not reveal positive correlations, and microplastic occurrence was not affected by changing seasons, which may need to be evaluated with further studies. Research should also be performed on the effect of influent sources on the level of microplastic abundance and fate of ultrafine plastics in WWTPs.

2.
Environ Pollut ; 333: 122017, 2023 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-37307864

RESUMO

Large amounts of microplastics are discharged into wastewater treatment plants (WWTPs), from where some of them are released into natural waterbodies on account of their not being fully eliminated by WWTPs. To investigate the behavior and emission of microplastics from WWTPs, we selected four WWTPs with different treatment technologies, including anaerobic-anoxic-aerobic (A2O), sequence batch reactor (SBR), media, and membrane bioreactor (MBR). The number of microplastics detected using Fourier transform infrared (FT-IR) spectroscopy ranged from 520 to 1820 particles/L in influent and from 0.56 to 2.34 particles/L in effluent. The microplastic removal efficiencies of four WWTPs were over 99%, indicating that the type of treatment technologies did not significantly affect the removal rate of microplastics. In the unit process for each WWTP, the major stages relating to microplastic removal were the secondary clarifier and tertiary treatment processes. Most microplastics detected were categorized as fragments and fibers, while other types were hardly detected. The size of more than 80% of microplastic particles detected in WWTPs ranged between 20 and 300 µm, indicating that they were significantly smaller than the size threshold defined for microplastics. Therefore, we used thermal extraction-desorption coupled with gas chromatography-mass spectroscopy (TED-GC-MS) to evaluate the microplastic mass content in all four WWTPs, and the results were compared with those of the FT-IR analysis. In this method, only four components, namely polyethylene, polypropylene, polystyrene, and polyethylene terephthalate, were analyzed because of the analysis limitation, and the total microplastic concentration represented the sum of four components concentrations. The influent and effluent microplastic concentrations estimated by TED-GC-MS ranged from not detectable to 160 µg/L and 0.04-1.07 µg/L, respectively, indicating a correlation coefficient of 0.861 (p < 0.05) between the TED-GC-MS and FT-IR results, when compared to the combined abundance of the four microplastic components by FT-IR analysis.


Assuntos
Poluentes Químicos da Água , Purificação da Água , Microplásticos , Plásticos/análise , Águas Residuárias , Espectroscopia de Infravermelho com Transformada de Fourier , Análise de Fourier , Cromatografia Gasosa-Espectrometria de Massas , Poluentes Químicos da Água/análise , Monitoramento Ambiental , Eliminação de Resíduos Líquidos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...