Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Biol Chem ; 279(27): 28304-14, 2004 Jul 02.
Artigo em Inglês | MEDLINE | ID: mdl-15102843

RESUMO

Dopamine D(2) and D(3) receptors (D(2)R/D(3)R), which have similar structural architecture as well as functional similarities, are expressed in the same brain dopaminergic neurons. It is intriguing that two receptor proteins with virtually the same functional roles are expressed in the same neuron. Recently we have shown that D(2)R and D(3)R possess different regulatory processes including intracellular trafficking properties, which implies that they might employ different signaling mechanisms for regulation of the same cellular processes. Here we studied the signaling pathways of ERK activation mediated by D(2)R and D(3)R in HEK-293 cells and corroborated them with concomitant studies in COS-7 cells and C6 cells. Our results show that Src, phosphatidylinositol 3-kinase, and atypical protein kinase C were commonly involved in D(2)R-/D(3)R-mediated ERK activation. However, beta-arrestin and sequestration of D(2)R/D(3)R were found not to be involved. ERK activations mediated by D(3)R, but not D(2)R, were blocked by betaARK-CT, AG1478 epidermal growth factor receptor (EGFR) inhibitor, and by dominant negative mutants of Ras and Raf, suggesting the involvement of the Gbetagamma(i) pathway. The alpha-subunit of G(o) (Galpha(o)) was able to couple with D(3)R to mediate ERK activation. We conclude that D(3)R mainly utilizes the betagamma pathway of G(i) protein, which involves the transactivation of EGFR in HEK-293 cells. In contrast, the alpha-subunit of the G(i) protein plays a main role in D(2)R-mediated ERK activation. Our study suggests one example of intricate cellular regulations in the brain, that is, dopaminergic neurons could regulate ERK activity more flexibly through alternative usage of either the D(2)R or D(3)R pathway depending on the cellular situation.


Assuntos
Proteínas Quinases Ativadas por Mitógeno/metabolismo , Receptores de Dopamina D2/metabolismo , Animais , Arrestinas/metabolismo , Encéfalo/metabolismo , Células COS , Linhagem Celular , Endocitose , Ativação Enzimática , Receptores ErbB/metabolismo , Genes Dominantes , Proteínas de Fluorescência Verde , Humanos , Imuno-Histoquímica , Proteínas Luminescentes/metabolismo , Microscopia Confocal , Fosfatidilinositol 3-Quinases/metabolismo , Fosforilação , Plasmídeos/metabolismo , Proteína Quinase C/metabolismo , Estrutura Terciária de Proteína , Receptores de Dopamina D2/química , Receptores de Dopamina D3 , Transdução de Sinais , Fatores de Tempo , Ativação Transcricional , Transfecção , Fosfolipases Tipo C/metabolismo , beta-Arrestinas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...