Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Plants (Basel) ; 13(5)2024 Mar 06.
Artigo em Inglês | MEDLINE | ID: mdl-38475583

RESUMO

A plant factory equipped with artificial lights is a comparatively new concept when growing seed potatoes (Solanum tuberosum L.) for minituber production. The shortage of disease-free potato seed tubers is a key challenge to producing quality potatoes. Quality seed tuber production all year round in a controlled environment under an artificial light condition was the main purpose of this study. The present study was conducted in a plant factory to investigate the effects of distinct spectrum compositions of LEDs on potato tuberization when grown in an aeroponic system. The study was equipped with eight LED light combinations: L1 = red: blue: green (70 + 25 + 5), L2 = red: blue: green (70 + 20 + 10), L3 = red: blue: green (70 + 15 + 15), L4 = red: blue: green (70 + 10 + 20), L5 = red: blue: far-red (70 + 25 + 5), L6 = red: blue: far-red (70 + 20 + 10), L7 = red: blue: far-red (70 + 15 + 15), L8 = red: blue: far-red (70 + 10 + 20), and L9 = natural light with 300 µmol m-2 s-1 of irradiance, 16/8 h day/night, 65% relative humidity, while natural light was used as the control treatment. According to the findings, treatment L4 recorded a higher tuber number (31/plant), tuber size (>3 g); (9.26 ± 3.01), and GA3 content, along with better plant growth characteristics. Moreover, treatment L4 recorded a significantly increased trend in the stem diameter (11.08 ± 0.25), leaf number (25.32 ± 1.2), leaf width (19 ± 0.81), root length (49 ± 2.1), and stolon length (49.62 ± 2.05) compared to the control (L9). However, the L9 treatment showed the best performance in plant fresh weight (67.16 ± 4.06 g) and plant dry weight (4.46 ± 0.08 g). In addition, photosynthetic pigments (Chl a) (0.096 ± 0.00 mg g-1, 0.093 ± 0.00 mg g-1) were found to be the highest in the L1 and L2 treatments, respectively. However, Chl b and TCL recorded the best results in treatment L4. Finally, with consideration of the plant growth and tuber yield performance, treatment L4 was found to have the best spectral composition to grow quality seed potato tubers.

2.
Front Plant Sci ; 13: 984410, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36340385

RESUMO

Manipulation of growth and development of cannabis (Cannabis sativa L.) has received considerable interest by the scientific community due to its high value in medicinal and recreational use worldwide. This study was conducted to investigate the effects of LED spectral changes on reactive oxygen species (ROS) and cannabinoid accumulation by provoking growth, pigmentation, photosynthesis, and secondary metabolites production of cannabis grown in an indoor environment. After three weeks of vegetative growth under greenhouse condition, plants were further grown for 90 days in a plant factory treated with 4 LED light compositions with a canopy-level photosynthetic photon flux density (PPFD) of 300 µmol m-2 s-1 for 16 h. Photosynthetic pigments and photosynthetic rate were linearly increased up to 60 days and then sharply decreased which was found most prominent in L3: MB 240 (Red 85% + Blue 15%) and L4: PF 240 (Red 70% + Blue 30%) LED light compositions. A high concentration of H2O2 was also observed in L3 and L4 treatments which provoked lipid peroxidation in later growth stage. In addition, higher accumulation of cannabinoid was observed under L4 treatment in most cases. It is also evident that higher ROS created a cellular stress in plant as indicated by higher osmolyte synthesis and enzyme activity which initiate quick maturation along with higher cannabinoids accumulation in cannabis plant. Therefore, it can be concluded that ROS metabolism has a crucial role in morpho-physiological acclimation and cannabinoid accumulation in hemp plants. The findings of this study provide further insight on the use of LED light to maximize the production of cannabinoid.

3.
PLoS One ; 17(1): e0262099, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-34995297

RESUMO

Drought tolerance is a complex trait controlled by many metabolic pathways and genes and identifying a solution to increase the resilience of plants to drought stress is one of the grand challenges in plant biology. This study provided compelling evidence of increased drought stress tolerance in two sugar beet genotypes when treated with exogenous putrescine (Put) at the seedling stage. Morpho-physiological and biochemical traits and gene expression were assessed in thirty-day-old sugar beet seedlings subjected to drought stress with or without Put (0.3, 0.6, and 0.9 mM) application. Sugar beet plants exposed to drought stress exhibited a significant decline in growth and development as evidenced by root and shoot growth characteristics, photosynthetic pigments, antioxidant enzyme activities, and gene expression. Drought stress resulted in a sharp increase in hydrogen peroxide (H2O2) (89.4 and 118% in SBT-010 and BSRI Sugar beet 2, respectively) and malondialdehyde (MDA) (35.6 and 27.1% in SBT-010 and BSRI Sugar beet 2, respectively). These changes were strongly linked to growth retardation as evidenced by principal component analysis (PCA) and heatmap clustering. Importantly, Put-sprayed plants suffered from less oxidative stress as indicated by lower H2O2 and MDA accumulation. They better regulated the physiological processes supporting growth, dry matter accumulation, photosynthetic pigmentation and gas exchange, relative water content; modulated biochemical changes including proline, total soluble carbohydrate, total soluble sugar, and ascorbic acid; and enhanced the activities of antioxidant enzymes and gene expression. PCA results strongly suggested that Put conferred drought tolerance mostly by enhancing antioxidant enzymes activities that regulated homeostasis of reactive oxygen species. These findings collectively provide an important illustration of the use of Put in modulating drought tolerance in sugar beet plants.


Assuntos
Antioxidantes/farmacologia , Beta vulgaris/metabolismo , Secas , Regulação da Expressão Gênica de Plantas/efeitos dos fármacos , Proteínas de Plantas/metabolismo , Putrescina/farmacologia , Estresse Fisiológico , Beta vulgaris/efeitos dos fármacos , Beta vulgaris/genética , Estresse Oxidativo , Fotossíntese , Proteínas de Plantas/genética , Brotos de Planta/efeitos dos fármacos , Brotos de Planta/genética , Brotos de Planta/metabolismo , Espécies Reativas de Oxigênio/metabolismo
4.
Sci Rep ; 12(1): 770, 2022 01 14.
Artigo em Inglês | MEDLINE | ID: mdl-35031682

RESUMO

Pinosylvin stilbenes are phenolic compounds mainly occurring in the Pinaceae family. We previously reported that the accumulation of two pinosylvin stilbene compounds, dihydropinosylvin methyl ether (DPME) and pinosylvin monomethyl ether (PME), in Pinus strobus trees was highly enhanced by infection with pine wood nematodes (PWNs: Bursaphelenchus xylophilus), and these two compounds showed strong nematicidal activity against PWNs. In this work, we established a system of pinosylvin stilbene (DPME and PME) production via the in vitro culture of P. strobus calli, and we examined the nematicidal activity of callus extracts. Calli were induced from the culture of mature zygotic embryos of P. strobus. Optimized growth of calli was obtained in 1/2 Litvay medium with 1.0 mg/L 2,4-D and 0.5 mg/L BA. DPME and PME accumulation did not occur in nonaged (one-month-old) calli but increased greatly with prolonged callus culture. The concentrations of DPME and PME in three-month-old dark-brown calli were 6.4 mg/g DW and 0.28 mg/g DW, respectively. The effect of methyl jasmonate treatment on the accumulation of DPME and PME was evaluated in cell suspension culture of P. strobus. However, the treatment appeared to show slight increase of DPME accumulation compared to callus browning. A test solution prepared from crude ethanol extracts from aged calli (three months old) containing 120 µg/ml DPME and 5.16 µg/ml PME treated with PWNs resulted in 100% immobilization of the adult PWNs and 66.7% immobilization of the juvenile PWNs within 24 h. However, nonaged callus extracts did not show any nematicidal activity against juvenile PWNs and showed less than 20% nematicidal activity against adult PWNs. These results indicate that pinosylvin stilbenes can be effectively produced by prolonged culture of P. strobus calli, can be isolated using simple ethanolic extraction, and are applicable as beneficial eco-friendly compounds with nematicidal activity against PWNs.


Assuntos
Antinematódeos/isolamento & purificação , Antinematódeos/farmacologia , Nematoides/efeitos dos fármacos , Pinus/metabolismo , Estilbenos/farmacologia , Animais , Células Cultivadas , Etanol , Estilbenos/isolamento & purificação , Estilbenos/metabolismo , Fatores de Tempo
5.
Biology (Basel) ; 10(8)2021 Jul 24.
Artigo em Inglês | MEDLINE | ID: mdl-34439943

RESUMO

Hemp adaptability through physiological and biochemical changes was studied under 10 LED light spectra and natural light in a controlled aeroponic system. Light treatments were imposed on 25 days aged seedlings for 16 h daily (300 µmol m-2 s-1) for 20 days. Plant accumulated highest Cannabidiol (CBD) in R7:B2:G1 light treatment, with relatively higher photosynthetic rate and lower reactive oxygen species, total phenol content, total flavonoid content, DPPH radical scavenging capacity, and antioxidant enzymatic activities. Tetrahydrocannabinol (THC) also accumulated at a higher level in white, R8:B2, and R7:B2:G1 light with less evidence of stress-modulated substances. These results indicated that CBD and THC have no or little relation with light-mediated abiotic stress in hemp plants. On the contrary, Tetrahydrocannabinolic acid (THCA) was accumulated higher in R6:B2:G1:FR1 and R5:B2:W2:FR1 light treatment along with lower photosynthetic rate and higher reactive oxygen species, total phenol content, total flavonoid content, DPPH radical scavenging capacity, and antioxidant enzymatic activities. However, Cannabidiolic acid (CBDA) was accumulated higher in R6:B2:G1:FR1 light treatment with higher stress-modulated substances and lower physiological traits. CBDA was also accumulated higher in R8:B2 and R7:B2:G1 light treatments with less evidence of stress-modulated substances. Besides, Greenlight influenced CBD and CBDA synthesis where FR and UV-A (along with green) play a positive and negative role in this process. Overall, the results indicated that the treatment R7:B2:G1 enhanced the medicinal cannabinoids most, and the role of THCA as a stress marker is more decisive in the hemp plant than in other cannabinoids under attributed light-mediated stress.

6.
Genomics Inform ; 19(2): e19, 2021 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-34261303

RESUMO

Plant height is an important component of plant architecture and significantly affects crop breeding practices and yield. We studied DNA variations derived from F5 recombinant inbred lines (RILs) with 96.8% homozygous genotypes. Here, we report DNA variations between the normal and dwarf members of four lines harvested from a single seed parent in an F6 RIL population derived from a cross between Glycine max var. Peking and Glycine soja IT182936. Whole genome sequencing was carried out, and the DNA variations in the whole genome were compared between the normal and dwarf samples. We found a large number of DNA variations in both the dwarf and semi-dwarf lines, with one single nucleotide polymorphism (SNP) per at least 3.68 kb in the dwarf lines and 1 SNP per 11.13 kb of the whole genome. This value is 2.18 times higher than the expected DNA variation in the F6 population. A total of 186 SNPs and 241 SNPs were discovered in the coding regions of the dwarf lines 1282 and 1303, respectively, and we discovered 33 homogeneous nonsynonymous SNPs that occurred at the same loci in each set of dwarf and normal soybean. Of them, five SNPs were in the same positions between lines 1282 and 1303. Our results provide important information for improving our understanding of the genetics of soybean plant height and crop breeding. These polymorphisms could be useful genetic resources for plant breeders, geneticists, and biologists for future molecular biology and breeding projects.

7.
Foods ; 10(7)2021 Jun 29.
Artigo em Inglês | MEDLINE | ID: mdl-34209795

RESUMO

Stocking density stress is one of the most common management stressors in the poultry industry. The present study was designed to investigate the effect of dietary Sophora koreensis (SK; 0 and 20 mg/kg diet) and stocking density (SD; 14 and 16 chickens/m2) on the antioxidant status, meat quality, and growth performance of native Korean chickens. There was a lower concentration of malondialdehyde (MDA) and a higher concentration of catalase, superoxide dismutase (SOD), and total antioxidant capacity in the serum and leg muscle with the supplementation of SK. The concentration of MDA was increased and concentrations of SOD were decreased in the leg muscle of chickens in low SD treatments. The SK-supplemented treatments showed an increased 3-ethylbenzothiazoline-6-sulfonate-reducing activity of leg muscles. The higher water holding capacity of breast muscle and a lower cooking loss and pH were shown in the SK-supplemented treatments. The addition of dietary SK resulted in a greater body weight gain and greater spleen and bursa Fabricius weight, as well as lower feed intake and abdominal fat. The low SD and supplementation of SK increased the concentrations of cholesterol. The concentration of glucose was increased in the low SD treatment. Corticosterone level was decreased in the SK-supplemented and low SD treatments. In conclusion, SK supplementation reduced the oxidative stress and increased meat quality and antioxidant status of chickens apart from the SD stress.

8.
Front Plant Sci ; 12: 788356, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-35046976

RESUMO

Triterpenoids exist in a free state and/or in conjugated states, such as triterpene glycosides (saponins) or triterpene esters. There is no information on the enzyme participating in the production of triterpene esters from free triterpenes. Lettuce (Lactuca sativa) contains various pentacyclic triterpene acetates (taraxasterol acetates, ψ-taraxasterol acetates, taraxerol acetates, lupeol acetates, α-amyrin acetates, ß-amyrin acetates, and germanicol acetate). In this study, we report a novel triterpene acetyltransferase (LsTAT1) in lettuce involved in the biosynthesis of pentacyclic triterpene acetates from free triterpenes. The deduced amino acid sequences of LsTAT1 showed a phylogenetic relationship (43% identity) with those of sterol O-acyltransferase (AtSAT1) of Arabidopsis thaliana and had catalytic amino acid residues (Asn and His) that are typically conserved in membrane-bound O-acyltransferase (MBOAT) family proteins. An analysis of LsTAT1 enzyme activity in a cell-free system revealed that the enzyme exhibited activity for the acetylation of taraxasterol, ψ-taraxasterol, ß-amyrin, α-amyrin, lupeol, and taraxerol using acetyl-CoA as an acyl donor but no activity for triterpene acylation using a fatty acyl donor. Lettuce oxidosqualene cyclase (LsOSC1) is a triterpene synthase that produces ψ-taraxasterol, taraxasterol, ß-amyrin and α-amyrin. The ectopic expression of both the LsOSC1 and LsTAT1 genes in yeast and tobacco could produce taraxasterol acetate, ψ-taraxasterol acetate, ß-amyrin acetate, and α-amyrin acetate. However, expression of the LsTAT1 gene in tobacco was unable to induce the conversion of intrinsic sterols (campesterol, stigmasterol, and ß-sitosterol) to sterol acetates. The results demonstrate that the LsTAT1 enzyme is a new class of acetyltransferase belong to the MBOAT family that have a particular role in the acetylation of pentacyclic triterpenes and are thus functionally different from sterol acyltransferase conjugating fatty acyl esters.

9.
Mitochondrial DNA B Resour ; 5(1): 572-573, 2020 Jan 14.
Artigo em Inglês | MEDLINE | ID: mdl-33366652

RESUMO

In this study, we report the complete chloroplast (cp) genome of Thelypteris interrupta, a fern member, and comparative analysis with its related family members. The cp genome was 155,983 bp long, with a typical quadripartite structure including a pair of inverted repeat regions (25,614 bp) separated by a large (82,769 bp) and small (21,986 bp) single-copy (SC) region. The genome encodes a total of 88 protein-coding genes, 35 tRNA genes, and 8 rRNA genes. Additionally, we identified 86 RNA editing sites in 52 genes; most of the substitution was U to C (52 sites), while C to U conversion occurred in 34 positions. The phylogenetic analysis strongly supported the relationship of T. interrupta with Ampelopteris prolifera and Christella appendiculata of Thelypteridoideae family.

10.
Mitochondrial DNA B Resour ; 5(3): 3067-3068, 2020 Jul 29.
Artigo em Inglês | MEDLINE | ID: mdl-33458061

RESUMO

In this study, we report the complete chloroplast (cp) genome of Sophora koreensis and its relation with other species within the Fabaceae family. The cp genome was 154,870 bp long, with a typical quadripartite structure including a pair of inverted repeat regions (25,866 bp) separated by a large (85,037 bp) and small (18,101 bp) single-copy (SC) region. The genome encodes a total of 84 protein-coding genes, 35 tRNA genes, and 8 rRNA genes. Phylogenetic analysis suggested that S. koreensis is closely related to genus Sophora alopecuroides var. alopecuroides within Fabaceae.

11.
Mitochondrial DNA B Resour ; 5(1): 102-103, 2019 Dec 11.
Artigo em Inglês | MEDLINE | ID: mdl-33366442

RESUMO

Woodwardia japonica is one of the diverse members of the fern group and medicinally important genus. In Korea, the natural resources of W. japonica are being exhausted by excessive exploitation and require urgent conservation. In this study, the complete chloroplast genome of W. japonica was generated, and its structure was compared with that of other members of same family. The chloroplast genome was 153224 bp long, with a typical quadripartite structure including a pair of inverted repeat regions (24591 bp) separated by a large (82480 bp) and small (21562 bp) single-copy (SC) region. The genome encodes a total of 88 protein-coding genes, 35 tRNA genes, and eight rRNA genes. Additionally we identified 87 RNA editing sites in 52 genes; most of the substitution was U to C (50 sites), while C to U conversion occurred in 37 positions. The phylogenetic analysis strongly supported the relationship of W. japonica with W. unigemmata and. A. melanocaulon (Blechnoideae).

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...