Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Tsitol Genet ; 36(6): 3-8, 2002.
Artigo em Russo | MEDLINE | ID: mdl-12557477

RESUMO

Transposon mediated insertional mutagenesis is one of the approaches for the unique gene cloning. A wild species of Cruciferae family Orychophragmus violaceus (L.) O.E. Schulz, which is of interest for practical breeding as a donor of improved plant oil, was an object of the investigation. Plasmid construction used in the experiments included selective NPT II gene, reported GUS gene serving as an excision marker, structural BAR gene located within the dSpm element and Spm transposase. The GUS gene of this plasmid had not his own promoter and became functional only after Spm-transposition. Transformed Orychophragmus violaceus (L.) O.E. Schulz. plants were obtained by direct mesophyll protoplast transformation as well as Agrobacterium tumefaciens-mediated root explant transformation. Gene transfer and the transposition event were confirmed by the GUS activity and the PCR analysis. Relative transformation efficiency using protoplasts was 5.8%.


Assuntos
Agrobacterium tumefaciens/genética , Brassicaceae/genética , Elementos de DNA Transponíveis/genética , Plantas Geneticamente Modificadas/genética , Transformação Genética , Brassicaceae/enzimologia , Genes de Plantas/genética , Genes Reporter/genética , Vetores Genéticos , Raízes de Plantas/enzimologia , Raízes de Plantas/genética , Plantas Geneticamente Modificadas/enzimologia , Reação em Cadeia da Polimerase , Protoplastos/metabolismo , Seleção Genética , Transposases/genética
2.
Mol Gen Genet ; 236(2-3): 427-32, 1993 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-8437587

RESUMO

Thirteen nuclear asymmetric hybrids were regenerated under selective conditions following fusion of chlorophyll-deficient protoplasts from cultivated tomato (Lycopersicon esculentum Mill.) and gamma-irradiated protoplasts from the wild species Lycopersicon peruvianum var. dentatum Dun. All hybrid plants were classified as being asymmetric based on morphological traits, chromosome numbers and isozyme patterns. The majority of the hybrids inherited Lycopersicon peruvianum var. dentatum chloroplasts. Mitochondrial DNA analysis revealed mixed mitochondrial populations deriving from both parents in some of the hybrids and rearranged mitochondrial DNA in others. The asymmetric hybrids express some morphological traits that are not found in either of the parental species. Fertile F1 plants were obtained after self-pollination of the asymmetric hybrids in four cases. The results obtained confirm the potential of asymmetric hybridization as a new source of genetic variation, and as a method for transferring of a part of genetic material from donor to recipient, and demonstrate that it is possible to produce fertile somatic hybrids by this technique.


Assuntos
Cruzamentos Genéticos , Herança Extracromossômica , Células Híbridas , Plantas Comestíveis/genética , Fosfatase Ácida/metabolismo , Fusão Celular , Cloroplastos/fisiologia , Cromossomos , DNA/metabolismo , DNA Mitocondrial/genética , Desoxirribonucleases de Sítio Específico do Tipo II/metabolismo , Esterases/metabolismo , Fertilidade , Raios gama , Isoenzimas , Plantas Comestíveis/embriologia , Plantas Comestíveis/efeitos da radiação , Ploidias , Pólen , Protoplastos/efeitos da radiação
3.
Theor Appl Genet ; 76(5): 760-6, 1988 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-24232355

RESUMO

Asymmetric nuclear hybrids have been obtained by fusion of cells from a nitrate-reductase deficient mutant of Nicotiana plumbaginifolia (cnx20) and gamma irradiated protoplasts of Atropa belladonna (irradiation doses tested were 10, 30, 50 and 100 krad). The hybrid formation frequency following selection for genotypic complementation in the NR function was in the range of 0.7%-3.7%. Cytogenetic studies demonstrated that all hybrid plants tested possessed multiple (generally tetra- or hexaploid) sets of N. plumbaginifolia (n = 10) chromosomes along with 6-29 Atropa chromosomes (n = 36), some of which were greatly deleted. Besides the cnxA gene (the selection marker), additional material of the irradiated partner was expressed in some of the lines, as shown by analyses of multiple molecular forms of enzymes. Surprisingly, rDNA genes of both parental species were present and amplified in the majority of the hybrids. Whenever studied, the chloroplast DNA in the hybrids was derived from the Nicotiana parent. Regenerants from some lines flowered and were partially fertile. It is concluded that irradiation of cells of the donor parent before fusion can be used to produce highly asymmetric nuclear hybrid plants, although within the dose range tested, the treatment determined the direction of the elimination but not the degree of elimination of the irradiated genome.

4.
Plant Cell Rep ; 5(5): 394-7, 1986 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-24248308

RESUMO

Protoplast fusion of Nicotiana tabacum (B6S3) crown gall cells and Atropa belladonna leaf mesophyll cells was carried out. Hybrids were selected for their capacity to grow on hormone-free media and to green in light. Shoots incapable of rhizogenesis were regenerated on the same media and grafted onto normal plants of different species. 57 hybrid cell lines differing in their genetic constitution were produced. Analysis of hybrid lines involved the determination of the lysopine dehydrogenase (LpDH) activity and the molecular forms of esterase and amylase, a restriction analysis of chloroplast DNA and a cytogenetic study.

5.
Theor Appl Genet ; 69(2): 121-8, 1984 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-24253701

RESUMO

Callus protoplasts of a Nicotiana tabacum chlorophyll-deficient mutant were fused with mesophyll protoplasts from one of following five sources: 4 cmsanalogs of tobacco bearing the cytoplasms of N. plumbaginifolia, N. suaveolens, N. repanda, and N. undulata, respectively, as well as wild species N. glauca. In another series of experiments, callus protoplasts from the chlorophyll-deficient genome Su/Su mutant of tobacco were fused with mesophyll protoplasts of the wild species N. glauca and those of a plastome chlorophyll-deficient tobacco mutant. The screening of hybrids consisted of visual identification followed by mechanical isolation and cloning of heteroplasmic fusion products in microdroplets of nutrient medium. Studies of regenerated plants included the analyses of gross morphology of plants, leaf and flower morphology, analysis of chromosome size and morphology and chromosome numbers, studies of multiple molecular forms of esterase and amylase, analysis of chloroplast DNA restriction patterns and analyses of chlorophyll-deficiency controlled by Su and P (-) genes. The study of progeny of 41 clones representing all species' combinations demonstrated that regenarants of most (63%) clones from intraspecific (for nuclear genes) combinations were cybrid forms, whereas in the case of the fusion N. tabacum + N. glauca, the true nuclear hybrids prevailed and the proportion of cybrids did not exceed 26%. Clones regenerating both hybrid and cybrid plants from the same fusion product were also found.

6.
Theor Appl Genet ; 65(4): 269-76, 1983 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-24263535

RESUMO

The genetic constitution of the cell hybrids Atropa belladonna + Nicotiana chinensis, obtained by cloning of individual heteroplasmic protoplast fusion products (Gleba et al. 1982) and cultured in vitro for 12 months, has been studied. The study comprised 11 hybrid cell clones of independent origin and included analysis of a) chromosome number, size, morphology, and relative position in metaphase plates, b) multiple molecular forms of the enzymes esterase and amylase, and c) relative nuclear DNA content. The data obtained permit us to conclude that, after one year of unorganized growth in vitro, the cells of most (8) clones had retained chromosomes of both parents, while species-specific elimination of nearly all Atropa chromosomes had occurred in three clones. About half of the non-segregating clones possess 120-150 chromosomes including 50-70 of Atropa and 50-90 of Nicotiana. Other clones are polyploid and possess 200-250 chromosomes with a predominance of either Atropa or Nicotiana chromosome types. Only a few chromosomal changes (reconstituted chromosomes, ring chromosomes) have been detected. In some metaphase plates, chromosomes of the two parents tend to group separately, indicating non-random arrangement of chromosomes of the two parents within the hybrid nucleus. Cytophotometric studies of the relative nuclear DNA content showed that distribution histograms for cell clones were similar to those of non-hybrid cultured cells. Cell populations were relatively homogenous and do not indicate any genetic instability as a result of hybridization between remote plant species. Biochemical analysis of isoenzyme patterns confirmed that in most cell clones, species-specific multiple molecular forms of esterase and amylase from both parents were present, i.e. genetic material of both parental species was expressed in the cell hybrids.

7.
Theor Appl Genet ; 62(1): 75-9, 1982 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-24270539

RESUMO

After fusion of isolated mesophyll protoplasts of belladonna (Atropa belladonna) with callus protoplasts of Chinese tobacco (Nicotiana chinensis) followed by mechanical isolation and cloning of individual heteroplasmic fusion products, 13 cell clones were obtained. The hybrid nature of most of the clones has been confirmed by biochemical (studies of amylase isozymes), cytogenetic (size and morphology of chromosomes) and physiological (peculiarities of cell-growth in vitro) analyses. Study of chromosomes and isozyme patterns in the hybrid cell lines revealed the presence of both parental genomes, without an indication of chromosome elimination, six months after hybridization. In 4 cell lines shootlike structures and plantlets have been produced by means of transfer to organogenesis-inducing media. The data obtained are interpreted as new evidence for the possibility of using non-sexual hybridization for the production of intergeneric, intertribal plant hybrids which cannot be obtained by sexual crossing. From these results the potential of Atropa (X) Nicotiana hybrids as a model system for genetic studies of distantly related plant species is discussed.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...