Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Drug Chem Toxicol ; 25(2): 171-90, 2002 May.
Artigo em Inglês | MEDLINE | ID: mdl-12024801

RESUMO

Over the years, there has been a great deal of interest in the biological consequences of marijuana use. While evidence indicates that cannabinoids may have therapeutic uses in alleviating certain disease discomfort, there is little recent information on potential health risks, particularly related to the developing fetus. The present study was undertaken to determine the effects of delta 9-tetrahydrocannabinol (THC), the major psychoactive component in marijuana on fetal lung development specifically related to surfactant production. The rationale for the choice of this model lies in the importance of adequate lung development and surfactant production for the successful transition of the fetus to an air-breathing environment. Lung type II cells, the source of pulmonary surfactant, were isolated from fetal rabbit lungs on the 24th gestational day and incubated concurrently with various concentrations of THC and [3H]choline to label disaturated phosphatidylcholine (DSPC) the major surface-active phospholipid of surfactant. Under these conditions THC significantly reduced radiolabelling of DSPC and at the highest concentration (10(-4) M) induced release of DSPC. Pulse-chase studies were also conducted. Cells were prelabelled with [3H]choline, removed to fresh medium with THC (10(-4) M) and incubated for various time periods. Aqueous- and organic-soluble intermediates of DSPC formation were isolated. THC induced a significant increase in radiolabelling of CDPcholine, the rate-limiting conversion in DSPC synthesis. Radiolabelling of total phosphatidylcholine and DSPC was also significantly increased. Assay of CTP: cholinephosphate cytidylyltransferase which enzymatically converts cholinephosphate to CDPcholine showed that THC and phosphatidylglycerol (PG) both induced activation of the enzyme in fetal lung cytosol but not in the membranes. This effect of THC and PG was not additive. THC activated the enzyme only in fetal and not adult rabbit lung. The ability of THC to induce release of surfactant related material was also examined. In cells prelabelled with [3H]choline, THC induced release of [3H]DSPC in both cultured and freshly isolated fetal type II cells. These results suggest THC reduces formation of surfactant DSPC, probably through alterations in membrane dynamics. However, intracellular THC may actually increase formation of DSPC through an effect on the rate-limiting enzyme. THC also increases release of previously formed surfactant-related material.


Assuntos
Dronabinol/toxicidade , Fosfatidilcolinas/biossíntese , Psicotrópicos/toxicidade , Alvéolos Pulmonares/efeitos dos fármacos , Surfactantes Pulmonares/metabolismo , Animais , Sobrevivência Celular/efeitos dos fármacos , Células Cultivadas , Colina/metabolismo , Colina-Fosfato Citidililtransferase/metabolismo , Relação Dose-Resposta a Droga , Feminino , L-Lactato Desidrogenase/metabolismo , Fosfatidilcolinas/metabolismo , Gravidez , Alvéolos Pulmonares/embriologia , Alvéolos Pulmonares/metabolismo , Coelhos , Trítio
2.
Chem Phys Lipids ; 110(1): 1-10, 2001 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-11245829

RESUMO

Lung cells are among the first tissues of the body to be exposed to air-borne environmental contaminants. Consequently the function of these cells may be altered before other cells are affected. As gas exchange takes place in the lungs, changes in cellular function may have serious implications for the processes of oxygen uptake and carbon dioxide elimination. In order for these processes to occur, the lung must maintain a high degree of expandability. This latter function is accomplished in part by the pulmonary surfactant which is synthesized and released by alveolar type II cells. Earlier studies have shown that exposure to gas phase materials such as smoke or organic solvents can alter the composition and function of the surfactant. The present study examines the ability of highly toxigenic mold spores to alter surfactant composition. Stachybotrys chartarum spores suspended in saline were instilled into mouse trachea as described earlier. After 24 h, the lungs were lavaged and the different processing stages of surfactant isolated by repeated centrifugation. Intracellular surfactant was isolated from the homogenized lung tissue by centrifugation on a discontinuous sucrose gradient. Samples were extracted into chloroform-methanol, dried and analyzed by Fourier-Transform infrared spectroscopy (FTIR). Exposure to S. chartarum induced an overall reduction of phospholipid among the three surfactant subfractions. The intermediate and spent surfactant fractions in particular were reduced to about half of the values observed in the saline-treated group. The relative distribution of phospholipid was also altered by spore exposure. Within the intracellular surfactant pool, higher levels of phospholipid were detected after spore exposure. In addition, changes were observed in the nature of the phospholipids. In particular strong intramolecular hydrogen bonding, together with other changes, suggested that spore exposure was associated with absence of an acyl chain esterified on the glycerol backbone, resulting in elevated levels of lysophospholipid in the samples. This study shows that mold spores and their products induce changes in regulation of both secretion and synthesis of surfactant, as well as alterations in the pattern of phospholipid targeting to the pulmonary surfactant pools.


Assuntos
Pulmão/microbiologia , Micotoxinas/toxicidade , Surfactantes Pulmonares/química , Espectroscopia de Infravermelho com Transformada de Fourier , Stachybotrys/patogenicidade , Animais , Pulmão/citologia , Pulmão/efeitos dos fármacos , Masculino , Camundongos , Fosfolipídeos/química , Esporos Fúngicos/patogenicidade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...