Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Inform Health Soc Care ; 45(3): 242-254, 2020 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-30913946

RESUMO

This study proposes a decision tree-based e-visit classification approach (DTEVCA) to determine clinic visits qualified as e-visits using clinics' medical records and patients' demographic data. This study assumes that health care insurance will subsidise e-visit service costs, in which case, identifying patients who benefit most from e-visit service is essential. Using a large data set from Taiwan's National Health Insurance, this study verifies the efficiency and validity of the DTEVCA. Results indicate that this approach can accurately classify in-office clinic visits that could switch to e-visit services. The straightforward rules of this decision tree also give insurance agencies a clear guideline to understand the circumstances of using e-visits and predict the effects of implementing e-visits in Taiwan. Result of this study can help countries improve the policy formulation process for physicians' use, or for academic research. The DTEVCA can update classification rules using new data to correct biases and ensure the stability of the e-visit system. In addition, the concept of this approach is feasible not only for e-visit service but also for other 'new services' such as new products or new policies.


Assuntos
Tomada de Decisões Assistida por Computador , Árvores de Decisões , Telemedicina , Adolescente , Adulto , Idoso , Assistência Ambulatorial , Bases de Dados Factuais , Feminino , Humanos , Seguro Saúde , Masculino , Pessoa de Meia-Idade , Taiwan , Adulto Jovem
2.
BMC Med Inform Decis Mak ; 19(1): 104, 2019 05 30.
Artigo em Inglês | MEDLINE | ID: mdl-31146749

RESUMO

BACKGROUND: Although previous research showed that telehealth services can reduce the misuse of resources and urban-rural disparities, most healthcare insurers do not include telehealth services in their health insurance schemes. Therefore, no target variable exists for the classification approaches to learn from or train with. The problem of identifying the potential recipients of telehealth services when introducing telehealth services into health welfare or health insurance schemes becomes an unsupervised classification problem without a target variable. METHODS: We propose a HDTTCA approach, which is a systematic approach (the main process of HDTTCA involves (1) data set preprocessing, (2) decision tree model building, and (3) predicting and explaining of the most important attributes in the data set for patients who qualify for telehealth service) to identify those who are eligible for telehealth services. RESULTS: This work uses data from the NHIRD provided by the NHIA in Taiwan in 2012 as our research scope, which consist of 55,389 distinct hospitals and 653,209 distinct patients with 15,882,153 outpatient and 135,775 inpatient records. After HDTTCA produces the final version of the decision tree, the rules can be used to assign the values of the target variables in the entire NHIRD. Our data indicate that 3.56% (23,262 out of 653,209) of the patients are eligible for telehealth services in 2012. This study verifies the efficiency and validity of HDTTCA by using a large data set from the NHI of Taiwan. CONCLUSION: This study conducts a series of experiments 30 times to compare the HDTTCA results with the logistic regression findings by measuring their average performance and determining which model addresses the telehealth patient classification problem better. Four important metrics are used to compare the results. In terms of sensitivity, the decision trees generated by HDTTCA and the logistic regression model are on equal grounds. In terms of accuracy, specificity, and precision, the decision tree generated by HDTTCA provides a better performance than that of the logistic regression model. When HDTTCA is applied, the decision tree model generates a competitive performance and provides clear, easily understandable rules. Therefore, HDTTCA is a suitable choice in solving telehealth service classification problems.


Assuntos
Classificação , Interpretação Estatística de Dados , Mineração de Dados , Árvores de Decisões , Modelos Teóricos , Telemedicina , Humanos , Taiwan
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...