Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Cytometry A ; 101(4): 298-310, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-34842347

RESUMO

Isolation of multiple cell populations from limited starting material and with minimal influence on cell homeostasis and viability are common requirements in both basic and clinical research. Fluorescence-activated cell sorting (FACS) is the most commonly applied sorting methodology with the majority of instruments being based on high pressure and electrostatic deflection. A more recent technology is based on a mechanical valve, operating at low pressure. In the present work we compared the two technologies by parallel sorting of small amounts of peripheral blood and umbilical cord blood on a BD FACSAria™ III and Miltenyi MACSQuant® Tyto® instrument. Concurrent manually performed magnetic-based cell sorting served as reference. Sorting metrics, including purity and viability, were compared. Expression of the heat-shock protein HSPA1A immediately post sorting and the proliferation potential of sorted T-cells in vitro was assessed. In general, there was little to distinguish the two fluorescence-activated technologies with regard to sorting metrics and HSPA1A expression. Variation, however, with respect to recovery and viability, was much smaller among Tyto sorted samples. The proliferation potential of Tyto-sorted T-cells was significantly higher compared to Aria-sorted T-cells, indicating that T-cells of the Tyto instrument are less perturbed. In summary, cell types of blood origin including CD34+ cells could effectively be isolated from small input amounts with either fluorescence-activated technology with little immediate effect on viability. The mechanical valve-based sorting by the Tyto instrument; however, appeared to perturb the cells to a lesser extent as judged by their proliferation potential.


Assuntos
Sangue Fetal , Separação Celular/métodos , Citometria de Fluxo/métodos , Eletricidade Estática
2.
Clin Epigenetics ; 13(1): 200, 2021 10 29.
Artigo em Inglês | MEDLINE | ID: mdl-34715912

RESUMO

BACKGROUND: Depression is a common, complex, and debilitating mental disorder estimated to be under-diagnosed and insufficiently treated in society. Liability to depression is influenced by both genetic and environmental risk factors, which are both capable of impacting DNA methylation (DNAm). Accordingly, numerous studies have researched for DNAm signatures of this disorder. Recently, an epigenome-wide association study of monozygotic twins identified an association between DNAm status in the KLK8 (neuropsin) promoter region and severity of depression symptomatology. METHODS: In this study, we aimed to investigate: (i) if blood DNAm levels, quantified by pyrosequencing, at two CpG sites in the KLK8 promoter are associated with depression symptomatology and depression diagnosis in an independent clinical cohort and (ii) if KLK8 DNAm levels are associated with depression, postpartum depression, and depression symptomatology in four independent methylomic cohorts, with blood and brain DNAm quantified by either MBD-seq or 450 k methylation array. RESULTS: DNAm levels in KLK8 were not significantly different between depression cases and controls, and were not significantly associated with any of the depression symptomatology scores after correction for multiple testing (minimum p value for KLK8 CpG1 = 0.12 for 'Depressed mood,' and for CpG2 = 0.03 for 'Loss of self-confidence with other people'). However, investigation of the link between KLK8 promoter DNAm levels and depression-related phenotypes collected from four methylomic cohorts identified significant association (p value < 0.05) between severity of depression symptomatology and blood DNAm levels at seven CpG sites. CONCLUSIONS: Our findings suggest that variance in blood DNAm levels in KLK8 promoter region is associated with severity of depression symptoms, but not depression diagnosis.


Assuntos
Metilação de DNA/genética , Depressão/diagnóstico , Calicreínas/análise , Calicreínas/genética , Idoso , Depressão/psicologia , Feminino , Sequenciamento de Nucleotídeos em Larga Escala/métodos , Sequenciamento de Nucleotídeos em Larga Escala/estatística & dados numéricos , Humanos , Masculino , Pessoa de Meia-Idade
3.
J Physiol Sci ; 70(1): 26, 2020 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-32414324

RESUMO

Neuropsin is a brain-expressed extracellular matrix serine protease that governs synaptic plasticity through activity-induced proteolytic cleavage of synaptic proteins. Its substrates comprise several molecules central to structural synaptic plasticity, and studies in rodents have documented its role in cognition and the behavioral and neurobiological response to stress. Intriguingly, differential usage of KLK8 (neuropsin gene) splice forms in the fetal and adult brain has only been reported in humans, suggesting that neuropsin may serve a specialized role in human neurodevelopment. Through systematic interrogation of large-scale genetic data, we review KLK8 regulation in the context of mental health and provide a summary of clinical and preclinical evidence supporting a role for neuropsin in the pathogenesis of mental illness.


Assuntos
Calicreínas/metabolismo , Proteínas de Membrana/metabolismo , Transtornos Mentais/metabolismo , Opsinas/metabolismo , Animais , Humanos , Transtornos Mentais/fisiopatologia , Saúde Mental , Plasticidade Neuronal
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...