Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Behav Brain Res ; 277: 237-44, 2015 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-25092571

RESUMO

Environmental factors can significantly affect disease prevalence, including neuropsychiatric disorders such as depression. The ratio of deuterium to protium in water shows substantial geographical variation, which could affect disease susceptibility. Thus the link between deuterium content of water and depression was investigated, both epidemiologically, and in a mouse model of chronic mild stress. We performed a correlation analysis between deuterium content of tap water and rates of depression in regions of the USA. Next, we used a 10-day chronic stress paradigm to test whether 2-week deuterium-depleted water treatment (91 ppm) affects depressive-like behavior and hippocampal SERT. The effect of deuterium-depletion on sleep electrophysiology was also evaluated in naïve mice. There was a geographic correlation between a content of deuterium and the prevalence of depression across the USA. In the chronic stress model, depressive-like features were reduced in mice fed with deuterium-depleted water, and SERT expression was decreased in mice treated with deuterium-treated water compared with regular water. Five days of predator stress also suppressed proliferation in the dentate gyrus; this effect was attenuated in mice fed with deuterium-depleted water. Finally, in naïve mice, deuterium-depleted water treatment increased EEG indices of wakefulness, and decreased duration of REM sleep, phenomena that have been shown to result from the administration of selective serotonin reuptake inhibitors (SSRI). Our data suggest that the deuterium content of water may influence the incidence of affective disorder-related pathophysiology and major depression, which might be mediated by the serotoninergic mechanisms.


Assuntos
Depressão/metabolismo , Transtorno Depressivo/fisiopatologia , Deutério/toxicidade , Serotonina/metabolismo , Água/química , Animais , Transtorno Depressivo/metabolismo , Modelos Animais de Doenças , Suscetibilidade a Doenças , Hipocampo/efeitos dos fármacos , Hipocampo/metabolismo , Masculino , Camundongos Endogâmicos C57BL , Proteínas da Membrana Plasmática de Transporte de Serotonina/metabolismo , Inibidores Seletivos de Recaptação de Serotonina/farmacologia
2.
Biomed Res Int ; 2013: 565218, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-24386638

RESUMO

Central thyroid hormone signaling is important in brain function/dysfunction, including affective disorders and depression. In contrast to 3,3',5-triiodo-L-thyronine (T3), the role of 3,5-diiodo-L-thyronine (T2), which until recently was considered an inactive metabolite of T3, has not been studied in these pathologies. However, both T3 and T2 stimulate mitochondrial respiration, a factor counteracting the pathogenesis of depressive disorder, but the cellular origins in the CNS, mechanisms, and kinetics of the cellular action for these two hormones are distinct and independent of each other. Here, Illumina and RT PCR assays showed that hippocampal gene expression of deiodinases 2 and 3, enzymes involved in thyroid hormone regulation, is increased in resilience to stress-induced depressive syndrome and after antidepressant treatment in mice that might suggest elevated T2 and T3 turnover in these phenotypes. In a separate experiment, bolus administration of T2 at the doses 750 and 1,500 mcg/kg but not 250 mcg/kg in naive mice reduced immobility in a two-day tail suspension test in various settings without changing locomotion or anxiety. This demonstrates an antidepressant-like effect of T2 that could be exploited clinically. In a wider context, the current study suggests important central functions of T2, whose biological role only lately is becoming to be elucidated.


Assuntos
Transtorno Depressivo/metabolismo , Di-Iodotironinas/genética , Iodeto Peroxidase/genética , Animais , Transtorno Depressivo/patologia , Di-Iodotironinas/metabolismo , Di-Iodotironinas/farmacologia , Regulação Enzimológica da Expressão Gênica , Hipocampo/metabolismo , Hipocampo/patologia , Iodeto Peroxidase/biossíntese , Camundongos , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/metabolismo , Transdução de Sinais/efeitos dos fármacos , Tri-Iodotironina/genética , Tri-Iodotironina/metabolismo , Iodotironina Desiodinase Tipo II
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...