Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 35
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Brain Behav Immun Health ; 38: 100757, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38590761

RESUMO

Background: A bioactive myelin basic protein (MBP) fragment, comprising MBP84-104, is released in sciatic nerve after chronic constriction injury (CCI). Intraneural injection (IN) of MBP84-104 in an intact sciatic nerve is sufficient to induce persistent neuropathic pain-like behavior via robust transcriptional remodeling at the injection site and ipsilateral dorsal root ganglia (DRG) and spinal cord. The sex (female)-specific pronociceptive activity of MBP84-104 associates with sex-specific changes in cholesterol metabolism and activation of estrogen receptor (ESR)1 signaling. Methods: In male and female normal and post-CCI rat sciatic nerves, we assessed: (i) cholesterol precursor and metabolite levels by lipidomics; (ii) MBP84-104 interactors by mass spectrometry of MBP84-104 pull-down; and (iii) liver X receptor (LXR)α protein expression by immunoblotting. To test the effect of LXRα stimulation on IN MBP84-104-induced mechanical hypersensitivity, the LXRα expression was confirmed along the segmental neuraxis, in DRG and spinal cord, followed by von Frey testing of the effect of intrathecally administered synthetic LXR agonist, GW3965. In cultured male and female rat DRGs exposed to MBP84-104 and/or estrogen treatments, transcriptional effect of LXR stimulation by GW3965 was assessed on downstream cholesterol transporter Abc, interleukin (IL)-6, and pronociceptive Cacna2d1 gene expression. Results: CCI regulated LXRα ligand and receptor levels in nerves of both sexes, with cholesterol precursors, desmosterol and 7-DHC, and oxysterol elevated in females relative to males. MBP84-104 interacted with nuclear receptor coactivator (Ncoa)1, known to activate LXRα, injury-specific in nerves of both sexes. LXR stimulation suppressed ESR1-induced IL-6 and Cacna2d1 expression in cultured DRGs of both sexes and attenuated MBP84-104-induced pain in females. Conclusion: The injury-released bioactive MBP fragments induce pronociceptive changes by selective inactivation of nuclear transcription factors, including LXRα. By Ncoa1 sequestration, bioactive MBP fragments render LXRα function to counteract pronociceptive activity of estrogen/ESR1 in sensory neurons. This effect of MBP fragments is prevalent in females due to high circulating estrogen levels in females relative to males. Restoring LXR activity presents a promising therapeutic strategy in management of neuropathic pain induced by bioactive MBP.

2.
Front Mol Neurosci ; 15: 1029278, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36385770

RESUMO

Sexual dimorphism is a powerful yet understudied factor that influences the timing and efficiency of gene regulation in axonal injury and repair processes in the peripheral nervous system. Here, we identified common and distinct biological processes in female and male degenerating (distal) nerve stumps based on a snapshot of transcriptional reprogramming 24 h after axotomy reflecting the onset of early phase Wallerian degeneration (WD). Females exhibited transcriptional downregulation of a larger number of genes than males. RhoGDI, ERBB, and ERK5 signaling pathways increased activity in both sexes. Males upregulated genes and canonical pathways that exhibited robust baseline expression in females in both axotomized and sham nerves, including signaling pathways controlled by neuregulin and nerve growth factors. Cholesterol biosynthesis, reelin signaling, and synaptogenesis signaling pathways were downregulated in females. Signaling by Rho Family GTPases, cAMP-mediated signaling, and sulfated glycosaminoglycan biosynthesis were downregulated in both sexes. Estrogens potentially influenced sex-dependent injury response due to distinct regulation of estrogen receptor expression. A crosstalk of cytokines and growth hormones could promote sexually dimorphic transcriptional responses. We highlighted prospective regulatory activities due to protein phosphorylation, extracellular proteolysis, sex chromosome-specific expression, major urinary proteins (MUPs), and genes involved in thyroid hormone metabolism. Combined with our earlier findings in the corresponding dorsal root ganglia (DRG) and regenerating (proximal) nerve stumps, sex-specific and universal early phase molecular triggers of WD enrich our knowledge of transcriptional regulation in peripheral nerve injury and repair.

3.
Front Mol Neurosci ; 15: 958568, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35983069

RESUMO

The convergence of transcriptional and epigenetic changes in the peripheral nervous system (PNS) reshapes the spatiotemporal gene expression landscape in response to nerve transection. The control of these molecular programs exhibits sexually dimorphic characteristics that remain not sufficiently characterized. In the present study, we recorded genome-wide and sex-dependent early-phase transcriptional changes in regenerating (proximal) sciatic nerve 24 h after axotomy. Male nerves exhibited more extensive transcriptional changes with male-dominant upregulation of cytoskeletal binding and structural protein genes. Regulation of mRNAs encoding ion and ionotropic neurotransmitter channels displayed prominent sexual dimorphism consistent with sex-specific mRNA axonal transport in an early-phase regenerative response. Protein kinases and axonal transport genes showed sexually dimorphic regulation. Genes encoding components of synaptic vesicles were at high baseline expression in females and showed post-injury induction selectively in males. Predictive bioinformatic analyses established patterns of sexually dimorphic regulation of neurotrophic and immune genes, including activation of glial cell line-derived neurotrophic factor Gfra1 receptor and immune checkpoint cyclin D1 (Ccnd1) potentially linked to X-chromosome encoded tissue inhibitor of matrix metallo proteinases 1 (Timp1). Regulatory networks involving Olig1, Pou3f3/Oct6, Myrf, and Myt1l transcription factors were linked to sex-dependent reprogramming in regenerating nerves. Differential expression patterns of non-coding RNAs motivate a model of sexually dimorphic nerve regenerative responses to injury determined by epigenetic factors. Combined with our findings in the corresponding dorsal root ganglia (DRG), unique early-phase sex-specific molecular triggers could enrich the mechanistic understanding of peripheral neuropathies.

4.
Front Cell Neurosci ; 16: 835800, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35496906

RESUMO

Immunotherapy holds promise as a non-addictive treatment of refractory chronic pain states. Increasingly, sex is recognized to impact immune regulation of pain states, including mechanical allodynia (pain from non-painful stimulation) that follows peripheral nerve trauma. This study aims to assess the role of B cells in sex-specific responses to peripheral nerve trauma. Using a rat model of sciatic nerve chronic constriction injury (CCI), we analyzed sex differences in (i) the release of the immunodominant neural epitopes of myelin basic protein (MBP); (ii) the levels of serum immunoglobulin M (IgM)/immunoglobulin G (IgG) autoantibodies against the MBP epitopes; (iii) endoneurial B cell/CD20 levels; and (iv) mechanical sensitivity behavior after B cell/CD20 targeting with intravenous (IV) Rituximab (RTX) and control, IV immunoglobulin (IVIG), therapy. The persistent MBP epitope release in CCI nerves of both sexes was accompanied by the serum anti-MBP IgM autoantibody in female CCI rats alone. IV RTX therapy during CD20-reactive cell infiltration of nerves of both sexes reduced mechanical allodynia in females but not in males. IVIG and vehicle treatments had no effect in either sex. These findings provide strong evidence for sexual dimorphism in B-cell function after peripheral nervous system (PNS) trauma and autoimmune pathogenesis of neuropathic pain, potentially amenable to immunotherapeutic intervention, particularly in females. A myelin-targeted serum autoantibody may serve as a biomarker of such painful states. This insight into the biological basis of sex-specific response to neuraxial injury will help personalize regenerative and analgesic therapies.

5.
EMBO Rep ; 23(6): e54069, 2022 06 07.
Artigo em Inglês | MEDLINE | ID: mdl-35466531

RESUMO

Human coronaviruses have been recently implicated in neurological sequelae by insufficiently understood mechanisms. We here identify an amino acid sequence within the HCoV-OC43 p65-like protein homologous to the evolutionarily conserved motif of myelin basic protein (MBP). Because MBP-derived peptide exposure in the sciatic nerve produces pronociceptive activity in female rodents, we examined whether a synthetic peptide derived from the homologous region of HCoV-OC43 (OC43p) acts by molecular mimicry to promote neuropathic pain. OC43p, but not scrambled peptides, induces mechanical hypersensitivity in rats following intrasciatic injections. Transcriptome analyses of the corresponding spinal cords reveal upregulation of genes and signaling pathways with known nociception-, immune-, and cellular energy-related activities. Affinity capture shows the association of OC43p with an Na+ /K+ -transporting ATPase, providing a potential direct target and mechanistic insight into virus-induced effects on energy homeostasis and the sensory neuraxis. We propose that HCoV-OC43 polypeptides released during infection dysregulate normal nervous system functions through molecular mimicry of MBP, leading to mechanical hypersensitivity. Our findings might provide a new paradigm for virus-induced neuropathic pain.


Assuntos
Coronavirus Humano OC43 , Neuralgia , Sequência de Aminoácidos , Animais , Coronavirus Humano OC43/fisiologia , Feminino , Humanos , Peptídeos , Ratos , Medula Espinal
6.
Front Mol Neurosci ; 14: 779024, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34966260

RESUMO

Peripheral nerve injury induces genome-wide transcriptional reprogramming of first-order neurons and auxiliary cells of dorsal root ganglia (DRG). Accumulating experimental evidence suggests that onset and mechanistic principles of post-nerve injury processes are sexually dimorphic. We examined largely understudied aspects of early transcriptional events in DRG within 24 h after sciatic nerve axotomy in mice of both sexes. Using high-depth RNA sequencing (>50 million reads/sample) to pinpoint sexually dimorphic changes related to regeneration, immune response, bioenergy, and sensory functions, we identified a higher number of transcriptional changes in male relative to female DRG. In males, the decline in ion channel transcripts was accompanied by the induction of innate immune cascades via TLR, chemokine, and Csf1-receptor axis and robust regenerative programs driven by Sox, Twist1/2, and Pax5/9 transcription factors. Females demonstrated nerve injury-specific transcriptional co-activation of the actinin 2 network. The predicted upstream regulators and interactive networks highlighted the role of novel epigenetic factors and genetic linkage to sex chromosomes as hallmarks of gene regulation post-axotomy. We implicated epigenetic X chromosome inactivation in the regulation of immune response activity uniquely in females. Sexually dimorphic regulation of MMP/ADAMTS metalloproteinases and their intrinsic X-linked regulator Timp1 contributes to extracellular matrix remodeling integrated with pro-regenerative and immune functions. Lexis1 non-coding RNA involved in LXR-mediated lipid metabolism was identified as a novel nerve injury marker. Together, our data identified unique early response triggers of sex-specific peripheral nerve injury regulation to gain mechanistic insights into the origin of female- and male-prevalent sensory neuropathies.

7.
J Biol Chem ; 295(31): 10807-10821, 2020 07 31.
Artigo em Inglês | MEDLINE | ID: mdl-32532796

RESUMO

In the peripheral nerve, mechanosensitive axons are insulated by myelin, a multilamellar membrane formed by Schwann cells. Here, we offer first evidence that a myelin degradation product induces mechanical hypersensitivity and global transcriptomics changes in a sex-specific manner. Focusing on downstream signaling events of the functionally active 84-104 myelin basic protein (MBP(84-104)) fragment released after nerve injury, we demonstrate that exposing the sciatic nerve to MBP(84-104) via endoneurial injection produces robust mechanical hypersensitivity in female, but not in male, mice. RNA-seq and systems biology analysis revealed a striking sexual dimorphism in molecular signatures of the dorsal root ganglia (DRG) and spinal cord response, not observed at the nerve injection site. Mechanistically, intra-sciatic MBP(84-104) induced phospholipase C (PLC)-driven (females) and phosphoinositide 3-kinase-driven (males) phospholipid metabolism (tier 1). PLC/inositol trisphosphate receptor (IP3R) and estrogen receptor co-regulation in spinal cord yielded Ca2+-dependent nociceptive signaling induction in females that was suppressed in males (tier 2). IP3R inactivation by intrathecal xestospongin C attenuated the female-specific hypersensitivity induced by MBP(84-104). According to sustained sensitization in tiers 1 and 2, T cell-related signaling spreads to the DRG and spinal cord in females, but remains localized to the sciatic nerve in males (tier 3). These results are consistent with our previous finding that MBP(84-104)-induced pain is T cell-dependent. In summary, an autoantigenic peptide endogenously released in nerve injury triggers multisite, sex-specific transcriptome changes, leading to neuropathic pain only in female mice. MBP(84-104) acts through sustained co-activation of metabolic, estrogen receptor-mediated nociceptive, and autoimmune signaling programs.


Assuntos
Sinalização do Cálcio , Gânglios Espinais/metabolismo , Neuralgia/metabolismo , RNA-Seq , Nervo Isquiático/metabolismo , Caracteres Sexuais , Transcriptoma , Animais , Feminino , Gânglios Espinais/patologia , Receptores de Inositol 1,4,5-Trifosfato/metabolismo , Masculino , Camundongos , Proteína Básica da Mielina/toxicidade , Neuralgia/induzido quimicamente , Neuralgia/patologia , Fragmentos de Peptídeos/toxicidade , Nervo Isquiático/patologia , Fosfolipases Tipo C/metabolismo
8.
Proc Natl Acad Sci U S A ; 115(50): E11681-E11690, 2018 12 11.
Artigo em Inglês | MEDLINE | ID: mdl-30478057

RESUMO

The dramatic reorganization of chromatin during mitosis is perhaps one of the most fundamental of all cell processes. It remains unclear how epigenetic histone modifications, despite their crucial roles in regulating chromatin architectures, are dynamically coordinated with chromatin reorganization in controlling this process. We have developed and characterized biosensors with high sensitivity and specificity based on fluorescence resonance energy transfer (FRET). These biosensors were incorporated into nucleosomes to visualize histone H3 Lys-9 trimethylation (H3K9me3) and histone H3 Ser-10 phosphorylation (H3S10p) simultaneously in the same live cell. We observed an anticorrelated coupling in time between H3K9me3 and H3S10p in a single live cell during mitosis. A transient increase of H3S10p during mitosis is accompanied by a decrease of H3K9me3 that recovers before the restoration of H3S10p upon mitotic exit. We further showed that H3S10p is causatively critical for the decrease of H3K9me3 and the consequent reduction of heterochromatin structure, leading to the subsequent global chromatin reorganization and nuclear envelope dissolution as a cell enters mitosis. These results suggest a tight coupling of H3S10p and H3K9me3 dynamics in the regulation of heterochromatin dissolution before a global chromatin reorganization during mitosis.


Assuntos
Técnicas Biossensoriais/métodos , Montagem e Desmontagem da Cromatina , Código das Histonas , Proteínas de Bactérias , Montagem e Desmontagem da Cromatina/genética , Transferência Ressonante de Energia de Fluorescência/métodos , Proteínas de Fluorescência Verde , Células HEK293 , Heterocromatina/genética , Heterocromatina/metabolismo , Código das Histonas/genética , Histonas/química , Histonas/genética , Histonas/metabolismo , Humanos , Proteínas Luminescentes , Mitose , Modelos Biológicos , Análise de Célula Única/métodos
9.
FEBS J ; 285(18): 3485-3502, 2018 09.
Artigo em Inglês | MEDLINE | ID: mdl-30079618

RESUMO

Neurotrauma frequently results in neuropathic pain. Our earlier studies revealed that peripheral neurotrauma-induced fragmentation of the myelin basic protein (MBP), a major component of the myelin sheath formed by Schwann cells, initiates a pain response from light touch stimuli (mechanical allodynia) in rodents. Here, we identified the cyclin-dependent kinase 5 (CDK5), as an intracellular interactor of MBP in Schwann cells. The algesic peptide fragment of MBP directly associated with CDK5. When complexed with its p25 coactivator, CDK5 phosphorylated the conserved MBP sequence. The expressed MBP fragment colocalized with CDK5 in Schwann cell protrusions. Roscovitine, an ATP-competitive CDK5 inhibitor, disrupted localization of the expressed MBP peptide. Mutations in the evolutionary conserved MBP algesic sequence resulted in the interference with intracellular trafficking of the MBP fragment and kinase activity of CDK5 and diminished pain-like behavior in rodents. Our findings show that MBP fragment amino acid sequence conservation determines its interactions, trafficking, and pronociceptive activity. Because CDK5 activity controls both neurogenesis and nociception, the algesic MBP fragment may be involved in the regulation of the CDK5 functionality in pain signaling and postinjury neurogenesis in vertebrates. DATABASE: The novel RNA-seq datasets were deposited in the GEO database under the accession number GSE107020.


Assuntos
Quinase 5 Dependente de Ciclina/metabolismo , Proteína Básica da Mielina/metabolismo , Dor/fisiopatologia , Fragmentos de Peptídeos/metabolismo , Células de Schwann/metabolismo , Sequência de Aminoácidos , Animais , Células Cultivadas , Sequência Conservada , Feminino , Hiperalgesia , Dor/metabolismo , Fosforilação , Ratos , Ratos Sprague-Dawley , Homologia de Sequência , Transdução de Sinais
10.
Biochem J ; 475(14): 2355-2376, 2018 07 31.
Artigo em Inglês | MEDLINE | ID: mdl-29954845

RESUMO

In demyelinating nervous system disorders, myelin basic protein (MBP), a major component of the myelin sheath, is proteolyzed and its fragments are released in the neural environment. Here, we demonstrated that, in contrast with MBP, the cellular uptake of the cryptic 84-104 epitope (MBP84-104) did not involve the low-density lipoprotein receptor-related protein-1, a scavenger receptor. Our pull-down assay, mass spectrometry and molecular modeling studies suggested that, similar with many other unfolded and aberrant proteins and peptides, the internalized MBP84-104 was capable of binding to the voltage-dependent anion-selective channel-1 (VDAC-1), a mitochondrial porin. Molecular modeling suggested that MBP84-104 directly binds to the N-terminal α-helix located midway inside the 19 ß-blade barrel of VDAC-1. These interactions may have affected the mitochondrial functions and energy metabolism in multiple cell types. Notably, MBP84-104 caused neither cell apoptosis nor affected the total cellular ATP levels, but repressed the aerobic glycolysis (lactic acid fermentation) and decreased the l-lactate/d-glucose ratio (also termed as the Warburg effect) in normal and cancer cells. Overall, our findings implied that because of its interactions with VDAC-1, the cryptic MBP84-104 peptide invoked reprogramming of the cellular energy metabolism that favored enhanced cellular activity, rather than apoptotic cell death. We concluded that the released MBP84-104 peptide, internalized by the cells, contributes to the reprogramming of the energy-generating pathways in multiple cell types.


Assuntos
Trifosfato de Adenosina/metabolismo , Metabolismo Energético/efeitos dos fármacos , Mitocôndrias/metabolismo , Proteína Básica da Mielina/farmacologia , Fragmentos de Peptídeos/farmacologia , Canal de Ânion 1 Dependente de Voltagem/metabolismo , Trifosfato de Adenosina/química , Animais , Linhagem Celular Tumoral , Glicólise/efeitos dos fármacos , Humanos , Camundongos , Mitocôndrias/química , Proteína Básica da Mielina/química , Fragmentos de Peptídeos/química , Domínios Proteicos , Estrutura Secundária de Proteína , Ratos , Canal de Ânion 1 Dependente de Voltagem/química
11.
J Neuroinflammation ; 15(1): 89, 2018 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-29558999

RESUMO

BACKGROUND: In the peripheral nerve, pro-inflammatory matrix metalloproteinase (MMP)-9 performs essential functions in the acute response to injury. Whether MMP-9 activity contributes to late-phase injury or whether MMP-9 expression or activity after nerve injury is sexually dimorphic remains unknown. METHODS: Patterns of MMP-9 expression, activity and excretion were assessed in a model of painful peripheral neuropathy, sciatic nerve chronic constriction injury (CCI), in female and male rats. Real-time Taqman RT-PCR for MMP-9 and its endogenous inhibitor, tissue inhibitor of metalloproteinase-1 (TIMP-1) of nerve samples over a 2-month time course of CCI was followed by gelatin zymography of crude nerve extracts and purified MMP-9 from the extracts using gelatin Sepharose-beads. MMP excretion was determined using protease activity assay of urine in female and male rats with CCI. RESULTS: The initial upsurge in nerve MMP-9 expression at day 1 post-CCI was superseded more than 100-fold at day 28 post-CCI. The high level of MMP-9 expression in late-phase nerve injury was accompanied by the reduction in TIMP-1 level. The absence of MMP-9 in the normal nerve and the presence of multiple MMP-9 species (the proenzyme, mature enzyme, homodimers, and heterodimers) was observed at day 1 and day 28 post-CCI. The MMP-9 proenzyme and mature enzyme species dominated in the early- and late-phase nerve injury, consistent with the high and low level of TIMP-1 expression, respectively. The elevated nerve MMP-9 levels corresponded to the elevated urinary MMP excretion post-CCI. All of these findings were comparable in female and male rodents. CONCLUSION: The present study offers the first evidence for the excessive, uninhibited proteolytic MMP-9 activity during late-phase painful peripheral neuropathy and suggests that the pattern of MMP-9 expression, activity, and excretion after peripheral nerve injury is universal in both sexes.


Assuntos
Metaloproteinase 9 da Matriz/metabolismo , Neuropatia Ciática/enzimologia , Caracteres Sexuais , Animais , Modelos Animais de Doenças , Feminino , Masculino , Metaloproteinase 9 da Matriz/genética , Metaloproteinase 9 da Matriz/urina , RNA Mensageiro/metabolismo , Ratos , Proteínas S100/metabolismo , Fatores de Tempo , Inibidor Tecidual de Metaloproteinase-1/metabolismo , Inibidor Tecidual de Metaloproteinase-1/urina
12.
J Immunol Methods ; 455: 80-87, 2018 04.
Artigo em Inglês | MEDLINE | ID: mdl-29428829

RESUMO

Sciatic nerve chronic constriction injury (CCI) in rodents produces nerve demyelination via proteolysis of myelin basic protein (MBP), the major component of myelin sheath. Proteolysis releases the cryptic MBP epitope, a demyelination marker, which is hidden in the native MBP fold. It has never been established if the proteolytic release of this cryptic MBP autoantigen stimulates the post-injury increase in the respective circulating autoantibodies. To measure these autoantibodies, we developed the ELISA that employed the cryptic 84-104 MBP sequence (MBP84-104) as bait. This allowed us, for the first time, to quantify the circulating anti-MBP84-104 autoantibodies in rat serum post-CCI. The circulating IgM (but not IgG) autoantibodies were detectable as soon as day 7 post-CCI. The IgM autoantibody level continually increased between days 7 and 28 post-injury. Using the rat serum samples, we established that the ELISA intra-assay (precision) and inter-assay (repeatability) variability parameters were 2.87% and 4.58%, respectively. We also demonstrated the ELISA specificity by recording the autoantibodies to the liberated MBP84-104 epitope alone, but not to intact MBP in which the 84-104 region is hidden. Because the 84-104 sequence is conserved among mammals, we tested if the ELISA was applicable to detect demyelination and quantify the respective autoantibodies in humans. Our limited pilot study that involved 16 female multiple sclerosis and fibromyalgia syndrome patients demonstrated that the ELISA was efficient in measuring both the circulating IgG- and IgM-type autoantibodies in patients exhibiting demyelination. We believe that the ELISA measurements of the circulating autoantibodies against the pathogenic MBP84-104 peptide may facilitate the identification of demyelination in both experimental and clinical settings. In clinic, these measurements may assist neurologists to recognize patients with painful neuropathy and demyelinating diseases, and as a result, to personalize their treatment regimens.


Assuntos
Autoantígenos/imunologia , Ensaio de Imunoadsorção Enzimática/métodos , Esclerose Múltipla/diagnóstico , Proteína Básica da Mielina/imunologia , Fragmentos de Peptídeos/imunologia , Polirradiculoneuropatia/diagnóstico , Nervo Isquiático/patologia , Animais , Autoanticorpos/metabolismo , Biomarcadores/metabolismo , Doenças Desmielinizantes , Modelos Animais de Doenças , Epitopos/metabolismo , Feminino , Humanos , Ratos , Ratos Sprague-Dawley , Nervo Isquiático/cirurgia , Sensibilidade e Especificidade
13.
Brain Behav Immun ; 56: 378-89, 2016 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-26970355

RESUMO

Mechanosensory fibers are enveloped by myelin, a unique multilamellar membrane permitting saltatory neuronal conduction. Damage to myelin is thought to contribute to severe pain evoked by innocuous tactile stimulation (i.e., mechanical allodynia). Our earlier (Liu et al., 2012) and present data demonstrate that a single injection of a myelin basic protein-derived peptide (MBP84-104) into an intact sciatic nerve produces a robust and long-lasting (>30days) mechanical allodynia in female rats. The MBP84-104 peptide represents the immunodominant epitope and requires T cells to maintain allodynia. Surprisingly, only systemic gabapentin (a ligand of voltage-gated calcium channel α2δ1), but not ketorolac (COX inhibitor), lidocaine (sodium channel blocker) or MK801 (NMDA antagonist) reverse allodynia induced by the intrasciatic MBP84-104. The genome-wide transcriptional profiling of the sciatic nerve followed by the bioinformatics analyses of the expression changes identified interleukin (IL)-6 as the major cytokine induced by MBP84-104 in both the control and athymic T cell-deficient nude rats. The intrasciatic MBP84-104 injection resulted in both unilateral allodynia and unilateral IL-6 increase the segmental spinal cord (neurons and astrocytes). An intrathecal delivery of a function-blocking IL-6 antibody reduced the allodynia in part by the transcriptional effects in large-diameter primary afferents in DRG. Our data suggest that MBP regulates IL-6 expression in the nervous system and that the spinal IL-6 activity mediates nociceptive processing stimulated by the MBP epitopes released after damage or disease of the somatosensory nervous system.


Assuntos
Bloqueadores dos Canais de Cálcio/farmacologia , Inibidores de Ciclo-Oxigenase/farmacologia , Antagonistas de Aminoácidos Excitatórios/farmacologia , Hiperalgesia/induzido quimicamente , Hiperalgesia/tratamento farmacológico , Interleucina-6/metabolismo , Proteína Básica da Mielina/farmacologia , Fragmentos de Peptídeos/farmacologia , Nervo Isquiático/efeitos dos fármacos , Medula Espinal/metabolismo , Bloqueadores do Canal de Sódio Disparado por Voltagem/farmacologia , Aminas/farmacologia , Animais , Ácidos Cicloexanocarboxílicos/farmacologia , Maleato de Dizocilpina/farmacologia , Feminino , Gabapentina , Genômica , Interleucina-6/imunologia , Cetorolaco/farmacologia , Lidocaína/farmacologia , Proteína Básica da Mielina/administração & dosagem , Fragmentos de Peptídeos/administração & dosagem , Ratos , Ratos Nus , Ratos Sprague-Dawley , Ácido gama-Aminobutírico/farmacologia
14.
PLoS One ; 10(11): e0142529, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26544880

RESUMO

Adaptation to the environment requires pathogenic bacteria to alter their gene expression in order to increase long-term survival in the host. Here, we present the first experimental evidence that bacterial DNA methylation affects the intracellular survival of pathogenic Mycoplasma hyorhinis. Using bisulfite sequencing, we identified that the M. hyorhinis DNA methylation landscape was distinct in free-living M. hyorhinis relative to the internalized bacteria surviving in the infected human cells. We determined that genomic GATC sites were consistently highly methylated in the bacterial chromosome suggesting that the bacterial GATC-specific 5-methylcytosine DNA methyltransferase was fully functional both pre- and post-infection. In contrast, only the low CG methylation pattern was observed in the mycoplasma genome in the infective bacteria that invaded and then survived in the host cells. In turn, two distinct populations, with either high or low CG methylation, were detected in the M. hyorhinis cultures continually grown in the rich medium independently of host cells. We also identified that M. hyorhinis efficiently evaded endosomal degradation and uses exocytosis to exit infected human cells enabling re-infection of additional cells. The well-orchestrated changes in the chromosome methylation landscape play a major regulatory role in the mycoplasma life cycle.


Assuntos
DNA Bacteriano/metabolismo , Mycoplasma hyorhinis/metabolismo , Mycoplasma hyorhinis/patogenicidade , Células Cultivadas , Ilhas de CpG , Metilação de DNA , DNA Bacteriano/genética , DNA-Citosina Metilases/metabolismo , Genoma Bacteriano , Interações Hospedeiro-Patógeno , Humanos , Mycoplasma hyorhinis/genética , Trofoblastos/microbiologia
15.
J Neuroinflammation ; 12: 158, 2015 Sep 04.
Artigo em Inglês | MEDLINE | ID: mdl-26337825

RESUMO

BACKGROUND: Mechanical pain hypersensitivity associated with physical trauma to peripheral nerve depends on T-helper (Th) cells expressing the algesic cytokine, interleukin (IL)-17A. Fibronectin (FN) isoform alternatively spliced within the IIICS region encoding the 25-residue-long connecting segment 1 (CS1) regulates T cell recruitment to the sites of inflammation. Herein, we analyzed the role of CS1-containing FN (FN-CS1) in IL-17A expression and pain after peripheral nerve damage. METHODS: Mass spectrometry, immunoblotting, and FN-CS1-specific immunofluorescence analyses were employed to examine FN expression after chronic constriction injury (CCI) in rat sciatic nerves. The acute intra-sciatic nerve injection of the synthetic CS1 peptide (a competitive inhibitor of the FN-CS1/α4 integrin binding) was used to elucidate the functional significance of FN-CS1 in mechanical and thermal pain hypersensitivity and IL-17A expression (by quantitative Taqman RT-PCR) after CCI. The CS1 peptide effects were analyzed in cultured primary Schwann cells, the major source of FN-CS1 in CCI nerves. RESULTS: Following CCI, FN expression in sciatic nerve increased with the dominant FN-CS1 deposition in endothelial cells, Schwann cells, and macrophages. Acute CS1 therapy attenuated mechanical allodynia (pain from innocuous stimulation) but not thermal hyperalgesia and reduced the levels of IL-17A expression in the injured nerve. CS1 peptide inhibited the LPS- or starvation-stimulated activation of the stress ERK/MAPK pathway in cultured Schwann cells. CONCLUSIONS: After physical trauma to the peripheral nerve, FN-CS1 contributes to mechanical pain hypersensitivity by increasing the number of IL-17A-expressing (presumably, Th17) cells. CS1 peptide therapy can be developed for pharmacological control of neuropathic pain.


Assuntos
Hiperalgesia/etiologia , Hiperalgesia/metabolismo , Interleucina-17/metabolismo , Peptídeos/metabolismo , Neuropatia Ciática/complicações , Animais , Animais Recém-Nascidos , Antígenos CD/metabolismo , Antígenos de Diferenciação Mielomonocítica/metabolismo , Células Cultivadas , Modelos Animais de Doenças , Ativação Enzimática/efeitos dos fármacos , MAP Quinases Reguladas por Sinal Extracelular/metabolismo , Feminino , Hiperalgesia/tratamento farmacológico , Peptídeos e Proteínas de Sinalização Intercelular , Interleucina-17/genética , Medição da Dor , Peptídeos/uso terapêutico , Ratos , Ratos Sprague-Dawley , Células de Schwann/metabolismo , Nervo Isquiático/efeitos dos fármacos , Nervo Isquiático/metabolismo , Neuropatia Ciática/patologia , Fatores de Tempo
16.
Chem Biol ; 22(8): 1122-33, 2015 Aug 20.
Artigo em Inglês | MEDLINE | ID: mdl-26256476

RESUMO

Matrix metalloproteinases (MMPs) play incompletely understood roles in health and disease. Knowing the MMP cleavage preferences is essential for a better understanding of the MMP functions and design of selective inhibitors. To elucidate the cleavage preferences of MMPs, we employed a high-throughput multiplexed peptide-centric profiling technology involving the cleavage of 18,583 peptides by 18 proteinases from the main sub-groups of the MMP family. Our results enabled comparison of the MMP substrates on a global scale, leading to the most efficient and selective substrates. The data validated the accuracy of our cleavage prediction software. This software allows us and others to locate, with nearly 100% accuracy, the MMP cleavage sites in the peptide sequences. In addition to increasing our understanding of both the selectivity and the redundancy of the MMP family, our study generated a roadmap for the subsequent MMP structural-functional studies and efficient substrate and inhibitor design.


Assuntos
Ensaios de Triagem em Larga Escala/métodos , Metaloproteases/química , Metaloproteases/metabolismo , Sequência de Aminoácidos , Catálise , Humanos , Hidrólise , Isoenzimas/química , Isoenzimas/metabolismo , Modelos Moleculares , Peptídeos , Estrutura Terciária de Proteína , Relação Estrutura-Atividade , Especificidade por Substrato
17.
J Biol Chem ; 290(18): 11771-84, 2015 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-25792748

RESUMO

To shed light on the early immune response processes in severed peripheral nerves, we performed genome-wide transcriptional profiling and bioinformatics analyses of the proximal (P, regenerating) and distal (D, degenerating) nerve stumps on day 1 in the sciatic nerve axotomy model in rats. Multiple cell death-related pathways were activated in the degenerating D stump, whereas activation of the cytoskeletal motility and gluconeogenesis/glycolysis pathways was most prominent in the P stump of the axotomized nerve. Our bioinformatics analyses also identified the specific immunomodulatory genes of the chemokine, IL, TNF, MHC, immunoglobulin-binding Fc receptor, calcium-binding S100, matrix metalloproteinase, tissue inhibitor of metalloproteinase, and ion channel families affected in both the P and D segments. S100a8 and S100a9 were the top up-regulated genes in both the P and D segments. Stimulation of cultured Schwann cells using the purified S100A8/A9 heterodimer recapitulated activation of the myeloid cell and phagocyte chemotactic genes and pathways, which we initially observed in injured nerves. S100A8/A9 heterodimer injection into the intact nerve stimulated macrophage infiltration. We conclude that, following peripheral nerve injury, an immediate acute immune response occurs both distal and proximal to the lesion site and that the rapid transcriptional activation of the S100a8 and S100a9 genes results in S100A8/A9 hetero- and homodimers, which stimulate the release of chemokines and cytokines by activated Schwann cells and generate the initial chemotactic gradient that guides the transmigration of hematogenous immune cells into the injured nerve.


Assuntos
Calgranulina A/metabolismo , Calgranulina B/farmacologia , Nervo Isquiático/efeitos dos fármacos , Nervo Isquiático/lesões , Animais , Quimiocinas/metabolismo , Quimiotaxia/efeitos dos fármacos , Ativação Enzimática/efeitos dos fármacos , Feminino , Redes Reguladoras de Genes/efeitos dos fármacos , Humanos , Inflamação/imunologia , Inflamação/metabolismo , Inflamação/patologia , Camundongos , Proteínas Quinases/metabolismo , Ratos , Células de Schwann/citologia , Células de Schwann/efeitos dos fármacos , Células de Schwann/imunologia , Células de Schwann/metabolismo , Nervo Isquiático/imunologia , Nervo Isquiático/patologia , Regulação para Cima/efeitos dos fármacos
18.
Epigenetics ; 10(4): 303-18, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25695131

RESUMO

Aberrant DNA methylation is frequently observed in disease, including many cancer types, yet the underlying mechanisms remain unclear. Because germline and somatic mutations in the genes that are responsible for DNA methylation are infrequent in malignancies, additional mechanisms must be considered. Mycoplasmas spp., including Mycoplasma hyorhinis, efficiently colonize human cells and may serve as a vehicle for delivery of enzymatically active microbial proteins into the intracellular milieu. Here, we performed, for the first time, genome-wide and individual gene mapping of methylation marks generated by the M. hyorhinis CG- and GATC-specific DNA cytosine methyltransferases (MTases) in human cells. Our results demonstrated that, upon expression in human cells, MTases readily translocated to the cell nucleus. In the nucleus, MTases selectively and efficiently methylated the host genome at the DNA sequence sites free from pre-existing endogenous methylation, including those in a variety of cancer-associated genes. We also established that mycoplasma is widespread in colorectal cancers, suggesting that either the infection contributed to malignancy onset or, alternatively, that tumors provide a favorable environment for mycoplasma growth. In the human genome, ∼ 11% of GATC sites overlap with CGs (e.g., CGAT(m)CG); therefore, the methylated status of these sites can be perpetuated by human DNMT1. Based on these results, we now suggest that the GATC-specific methylation represents a novel type of infection-specific epigenetic mark that originates in human cells with a previous exposure to infection. Overall, our findings unveil an entirely new panorama of interactions between the human microbiome and epigenome with a potential impact in disease etiology.


Assuntos
Metilases de Modificação do DNA/metabolismo , Epigênese Genética , Genoma Humano , Mycoplasma hyorhinis/fisiologia , Sequência de Aminoácidos , Linhagem Celular Tumoral , Núcleo Celular/genética , Proliferação de Células , Clonagem Molecular , Neoplasias Colorretais/genética , Neoplasias Colorretais/patologia , Ilhas de CpG , Metilases de Modificação do DNA/genética , Marcadores Genéticos , Interações Hospedeiro-Patógeno , Humanos/parasitologia , Metilação , Dados de Sequência Molecular , Infecções por Mycoplasma/genética
19.
Oncotarget ; 6(5): 3420-31, 2015 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-25638164

RESUMO

Somatic hypermethylation of the O6-methylguanine-DNA methyltransferase gene (MGMT) was previously associated with G > A transition mutations in KRAS and TP53 in colorectal cancer (CRC). We tested the association of MGMT methylation with G > A mutations in KRAS and TP53 in 261 CRCs. Sixteen cases, with and without MGMT hypermethylation, were further analyzed by exome sequencing. No significant association of MGMT methylation with G > A mutations in KRAS, TP53 or in the whole exome was found (p > 0.5 in all comparisons). The result was validated by in silico comparison with 302 CRCs from The Cancer Genome Atlas (TCGA) consortium dataset. Transcriptional silencing associated with hypermethylation and stratified into monoallelic and biallelic. We also found a significant clustering (p = 0.001) of aberrant hypermethylation of MGMT and the matrix metalloproteinase gene ADAMTS14 in normal colonic mucosa of CRC patients. This suggested the existence of an epigenetic field defect for cancerization disrupting the methylation patterns of several loci, including MGMT or ADAMTS14, that may lead to predictive biomarkers for CRC. Methylation of these loci in normal mucosa was more frequent in elder (p = 0.001) patients, and particularly in African Americans (p = 1 × 10-5), thus providing a possible mechanistic link between somatic epigenetic alterations and CRC racial disparities in North America.


Assuntos
Proteínas ADAM/genética , Adenocarcinoma/etnologia , Adenocarcinoma/genética , Negro ou Afro-Americano/genética , Colo/enzimologia , Neoplasias Colorretais/etnologia , Neoplasias Colorretais/genética , Metilação de DNA , Metilases de Modificação do DNA/genética , Enzimas Reparadoras do DNA/genética , Mucosa Intestinal/enzimologia , Proteínas Supressoras de Tumor/genética , Proteínas ADAMTS , Adenocarcinoma/enzimologia , Fatores Etários , Neoplasias Colorretais/enzimologia , Bases de Dados Genéticas , Epigênese Genética , Regulação Neoplásica da Expressão Gênica , Predisposição Genética para Doença , Humanos , Instabilidade de Microssatélites , Mutação , Fenótipo , Proteínas Proto-Oncogênicas p21(ras)/genética , RNA Mensageiro/genética , Estudos Retrospectivos , Fatores de Risco , Proteína Supressora de Tumor p53/genética , Estados Unidos/epidemiologia
20.
J Biol Chem ; 290(6): 3693-707, 2015 Feb 06.
Artigo em Inglês | MEDLINE | ID: mdl-25488667

RESUMO

Neuronal glial antigen 2 (NG2) is an integral membrane chondroitin sulfate proteoglycan expressed by vascular pericytes, macrophages (NG2-Mφ), and progenitor glia of the nervous system. Herein, we revealed that NG2 shedding and axonal growth, either independently or jointly, depended on the pericellular remodeling events executed by membrane-type 1 matrix metalloproteinase (MT1-MMP/MMP-14). Using purified NG2 ectodomain constructs, individual MMPs, and primary NG2-Mφ cultures, we demonstrated for the first time that MMP-14 performed as an efficient and unconventional NG2 sheddase and that NG2-Mφ infiltrated into the damaged peripheral nervous system. We then characterized the spatiotemporal relationships among MMP-14, MMP-2, and tissue inhibitor of metalloproteinases-2 in sciatic nerve. Tissue inhibitor of metalloproteinases-2-free MMP-14 was observed in the primary Schwann cell cultures using the inhibitory hydroxamate warhead-based MP-3653 fluorescent reporter. In teased nerve fibers, MMP-14 translocated postinjury toward the nodes of Ranvier and its substrates, laminin and NG2. Inhibition of MMP-14 activity using the selective, function-blocking DX2400 human monoclonal antibody increased the levels of regeneration-associated factors, including laminin, growth-associated protein 43, and cAMP-dependent transcription factor 3, thereby promoting sensory axon regeneration after nerve crush. Concomitantly, DX2400 therapy attenuated mechanical hypersensitivity associated with nerve crush in rats. Together, our findings describe a new model in which MMP-14 proteolysis regulates the extracellular milieu and presents a novel therapeutic target in the damaged peripheral nervous system and neuropathic pain.


Assuntos
Antígenos/metabolismo , Macrófagos/metabolismo , Metaloproteinase 14 da Matriz/metabolismo , Traumatismos dos Nervos Periféricos/metabolismo , Proteoglicanas/metabolismo , Animais , Axônios/fisiologia , Membrana Celular/metabolismo , Células Cultivadas , Espaço Extracelular/metabolismo , Feminino , Proteína GAP-43/genética , Proteína GAP-43/metabolismo , Células HEK293 , Humanos , Laminina/genética , Laminina/metabolismo , Células MCF-7 , Masculino , Metaloproteinase 2 da Matriz/metabolismo , Regeneração Nervosa , Traumatismos dos Nervos Periféricos/fisiopatologia , Proteólise , Ratos , Ratos Sprague-Dawley , Células de Schwann/metabolismo , Nervo Isquiático/lesões , Nervo Isquiático/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...