Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sensors (Basel) ; 22(21)2022 Nov 06.
Artigo em Inglês | MEDLINE | ID: mdl-36366252

RESUMO

In the field of intelligent surface inspection systems, particular attention is paid to decision making problems, based on data from different sensors. The combination of such data helps to make an intelligent decision. In this research, an approach to intelligent decision making based on a data integration strategy to raise awareness of a controlled object is used. In the following article, this approach is considered in the context of reasonable decisions when detecting defects on the surface of welds that arise after the metal pipe welding processes. The main data types were RGB, RGB-D images, and acoustic emission signals. The fusion of such multimodality data, which mimics the eyes and ears of an experienced person through computer vision and digital signal processing, provides more concrete and meaningful information for intelligent decision making. The main results of this study include an overview of the architecture of the system with a detailed description of its parts, methods for acquiring data from various sensors, pseudocodes for data processing algorithms, and an approach to data fusion meant to improve the efficiency of decision making in detecting defects on the surface of various materials.


Assuntos
Algoritmos , Processamento de Sinais Assistido por Computador , Humanos , Acústica , Tomada de Decisões
2.
Sensors (Basel) ; 22(16)2022 Aug 18.
Artigo em Inglês | MEDLINE | ID: mdl-36015958

RESUMO

During the steel pipeline installation, special attention is paid to the butt weld control performed by fusion welding. The operation of the currently popular automated X-ray and ultrasonic testing complexes is associated with high resource and monetary costs. In this regard, this work is devoted to the development of alternative and cost-effective means of preliminary quality control of the work performed based on the visual testing method. To achieve this goal, a hardware platform based on a single board Raspberry Pi4 minicomputer and a set of available modules and expansion cards is proposed, and software whose main functionality is implemented based on the systemic application of computer vision algorithms and machine learning methods. The YOLOv5 object detection algorithm and the random forest machine learning model were used as a defect detection and classification system. The mean average precision (mAP) of the trained YOLOv5 algorithm based on extracted weld contours is 86.9%. A copy of YOLOv5 trained on the images of control objects showed a mAP result of 96.8%. Random forest identifying of the defect precursor based on the point clouds of the weld surface achieved a mAP of 87.5%.

3.
Materials (Basel) ; 14(24)2021 Dec 20.
Artigo em Inglês | MEDLINE | ID: mdl-34947477

RESUMO

Innovative development in the energy and chemical industries is mainly dependent on advances in the accelerated design and development of new functional materials. The success of research in new nanocatalysts mainly relies on modern techniques and approaches for their precise characterization. The existing methods of experimental characterization of nanocatalysts, which make it possible to assess the possibility of using these materials in specific chemical reactions or applications, generate significant amounts of heterogeneous data. The acceleration of new functional materials, including nanocatalysts, directly depends on the speed and quality of extracting hidden dependencies and knowledge from the obtained experimental data. Usually, such experiments involve different characterization techniques and different types of X-ray absorption spectroscopy (XAS) too. Using the machine learning (ML) methods based on XAS data, we can study and predict the atomic-scale structure and another bunch of parameters for the nanocatalyst efficiently. However, before using any ML model, it is necessary to make sure that the XAS raw experimental data is properly pre-processed, cleared, and prepared for ML application. Usually, the XAS preprocessing stage is vaguely presented in scientific studies, and the main efforts of researchers are devoted to the ML description and implementation stage. However, the quality of the input data influences the quality of ML analysis and the prediction results used in the future. This paper fills the gap between the stage of obtaining XAS data from synchrotron facilities and the stage of using and customizing various ML analysis and prediction models. We aimed this study to develop automated tools for the preprocessing and presentation of data from physical experiments and the creation of deposited datasets on the basis of the example of studying palladium-based nanocatalysts using synchrotron radiation facilities. During the study, methods of preliminary processing of XAS data were considered, which can be conditionally divided into X-ray absorption near edge structure (XANES) and extended X-ray absorption fine structure (EXAFS). This paper proposes a software toolkit that implements data preprocessing scenarios in the form of a single pipeline. The main preprocessing methods used in this study proposed are principal component analysis (PCA); z-score normalization; the interquartile method for eliminating outliers in the data; as well as the k-means machine learning method, which makes it possible to clarify the phase of the studied material sample by clustering feature vectors of experiments. Among the results of this study, one should also highlight the obtained deposited datasets of physical experiments on palladium-based nanocatalysts using synchrotron radiation. This will allow for further high-quality data mining to extract new knowledge about materials using artificial intelligence methods and machine learning models, and will ensure the smooth dissemination of these datasets to researchers and their reuse.

4.
Nanomaterials (Basel) ; 11(3)2021 Mar 02.
Artigo em Inglês | MEDLINE | ID: mdl-33801472

RESUMO

Innovations often play an essential role in the acceleration of the new functional materials discovery. The success and applicability of the synthesis results with new chemical compounds and materials largely depend on the previous experience of the researcher himself and the modernity of the equipment used in the laboratory. Artificial intelligence (AI) technologies are the next step in developing the solution for practical problems in science, including the development of new materials. Those technologies go broadly beyond the borders of a computer science branch and give new insights and practical possibilities within the far areas of expertise and chemistry applications. One of the attractive challenges is an automated new functional material synthesis driven by AI. However, while having many years of hands-on experience, chemistry specialists have a vague picture of AI. To strengthen and underline AI's role in materials discovery, a short introduction is given to the essential technologies, and the machine learning process is explained. After this review, this review summarizes the recent studies of new strategies that help automate and accelerate the development of new functional materials. Moreover, automatized laboratories' self-driving cycle could benefit from using AI algorithms to optimize new functional nanomaterials' synthetic routes. Despite the fact that such technologies will shape material science in the nearest future, we note the intelligent use of algorithms and automation is required for novel discoveries.

5.
Nanomaterials (Basel) ; 12(1)2021 Dec 21.
Artigo em Inglês | MEDLINE | ID: mdl-35009962

RESUMO

Artificial intelligence (AI) approaches continue to spread in almost every research and technology branch. However, a simple adaptation of AI methods and algorithms successfully exploited in one area to another field may face unexpected problems. Accelerating the discovery of new functional materials in chemical self-driving laboratories has an essential dependence on previous experimenters' experience. Self-driving laboratories help automate and intellectualize processes involved in discovering nanomaterials with required parameters that are difficult to transfer to AI-driven systems straightforwardly. It is not easy to find a suitable design method for self-driving laboratory implementation. In this case, the most appropriate way to implement is by creating and customizing a specific adaptive digital-centric automated laboratory with a data fusion approach that can reproduce a real experimenter's behavior. This paper analyzes the workflow of autonomous experimentation in the self-driving laboratory and distinguishes the core structure of such a laboratory, including sensing technologies. We propose a novel data-centric research strategy and multilevel data flow architecture for self-driving laboratories with the autonomous discovery of new functional nanomaterials.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...