Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Int J Mol Sci ; 25(8)2024 Apr 18.
Artigo em Inglês | MEDLINE | ID: mdl-38674057

RESUMO

A method has been proposed for creating an operationally durable copper coating with antimicrobial properties for the buttons of electrical switches based on the gas dynamic spray deposition of copper on acrylonitrile butadiene styrene (ABS) plastic. It is shown that during the coating process, a polymer film is formed on top of the copper layer. Comparative in situ studies of microbial contamination have shown that the copper-coated buttons have a significant antimicrobial effect compared to standard buttons. Analysis of swabs over a 22-week study in a hospital environment showed that the frequency of contamination for a copper-coated button with various microorganisms was 2.7 times lower than that of a control button. The presented results allow us to consider the developed copper coating for plastic switches an effective alternative method in the fight against healthcare-associated infections.


Assuntos
Anti-Infecciosos , Cobre , Hospitais , Cobre/química , Anti-Infecciosos/química , Anti-Infecciosos/farmacologia , Plásticos/química , Infecção Hospitalar/prevenção & controle , Humanos
2.
Int J Mol Sci ; 25(2)2024 Jan 08.
Artigo em Inglês | MEDLINE | ID: mdl-38255852

RESUMO

The global spread of multidrug-resistant (MDR) hospital-acquired pathogens is a serious problem for healthcare units. The challenge of the spreading of nosocomial infections, also known as hospital-acquired pathogens, including Pseudomonas aeruginosa, must be addressed not only by developing effective drugs, but also by improving preventive measures in hospitals, such as passive bactericidal coatings deposited onto the touch surfaces. In this paper, we studied the antibacterial activity of superhydrophilic and superhydrophobic copper surfaces against the P. aeruginosa strain PA103 and its four different polyresistant clinical isolates with MDR. To fabricate superhydrophilic and superhydrophobic coatings, we subjected the copper surfaces to laser processing with further chemosorption of fluorooxysilane to get a superhydrophobic substrate. The antibacterial activity of superhydrophilic and superhydrophobic copper surfaces was shown, with respect to both the collection strain PA103 and polyresistant clinical isolates of P. aeruginosa, and the evolution of the decontamination of a bacterial suspension is presented and discussed. The presented results indicate the promising potential of the exploitation of superhydrophilic coatings in the manufacture of contact surfaces for healthcare units, where the risk of infection spread and contamination by hospital-acquired pathogens is extremely high.


Assuntos
Cobre , Infecções por Pseudomonas , Humanos , Cobre/farmacologia , Pseudomonas aeruginosa , Antibacterianos/farmacologia , Hospitais , Interações Hidrofóbicas e Hidrofílicas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...