Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Bioelectrochemistry ; 150: 108327, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-36446195

RESUMO

It is highly advantageous to devise an in vitro platform that can predict the complexity of an in vivo system. The first step of this process is the identification of a xenobiotic whose monooxygenation is carried out by two sequential enzymatic reactions. Pesticides are a good model for this type of tandem reactions since in specific cases they are initially metabolised by human flavin-containing monooxygenase 1 (hFMO1), followed by cytochrome P450 (CYP). To assess the feasibility of such an in vitro platform, hFMO1 is immobilised on glassy carbon electrodes modified with graphene oxide (GO) and cationic surfactant didecyldimethylammonium bromide (DDAB). UV-vis, contact angle and AFM measurements support the effective decoration of the GO sheets by DDAB which appear as 3 nm thick structures. hFMO1 activity on the bioelectrode versus three pesticides; fenthion, methiocarb and phorate, lead to the expected sulfoxide products with KM values of 29.5 ± 5.1, 38.4 ± 7.5, 29.6 ± 4.1 µM, respectively. Moreover, phorate is subsequently tested in a tandem system with hFMO1 and CYP3A4 resulting in both phorate sulfoxide as well as phoratoxon sulfoxide. The data demonstrate the feasibility of using bioelectrochemical platforms to mimic the complex metabolic reactions of xenobiotics within the human body.


Assuntos
Praguicidas , Forato , Humanos , Forato/metabolismo , Citocromo P-450 CYP3A , Sulfóxidos/metabolismo
2.
Biochem Pharmacol ; 193: 114763, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34509493

RESUMO

Out of the five isoforms of human flavin-containing monooxygenase (hFMO), FMO1 and FMO3 are the most relevant to Phase I drug metabolism. They are involved in the oxygenation of xenobiotics including drugs and pesticides using NADPH and FAD as cofactors. Majority of the characterization of these enzymes has involved hFMO3, where intermediates of its catalytic cycle have been described. On the other hand, research efforts have so far failed in capturing the same key intermediate that is responsible for the monooxygenation activity of hFMO1. In this work we demonstrate spectrophotometrically the formation of a highly stable C4a-hydroperoxyflavin intermediate of hFMO1 upon reduction by NADPH and in the presence of O2. The measured half-life of this flavin intermediate revealed it to be stable and not fully re-oxidized even after 30 min at 15 °C in the absence of substrate, the highest stability ever observed for a human FMO. In addition, the uncoupling reactions of hFMO1 show that this enzyme is <1% uncoupled in the presence of substrate, forming small amounts of H2O2 with no observable superoxide as confirmed by EPR spin trapping experiments. This behaviour is different from hFMO3, that is shown to form both H2O2 and superoxide anion radical as a result of ∼50% uncoupling. These data are consistent with the higher stability of the hFMO1 intermediate in comparison to hFMO3. Taken together, these data demonstrate the different behaviours of these two closely related enzymes with consequences for drug metabolism as well as possible toxicity due to reactive oxygen species.


Assuntos
Flavinas/metabolismo , Regulação Enzimológica da Expressão Gênica/efeitos dos fármacos , Oxigenases/metabolismo , Dicroísmo Circular , Escherichia coli , Antagonistas de Estrogênios/química , Antagonistas de Estrogênios/metabolismo , Fention/química , Fention/metabolismo , Flavina-Adenina Dinucleotídeo , Flavinas/química , Humanos , Inseticidas/química , Inseticidas/metabolismo , Cinética , NADP , Oxirredução , Oxigênio , Oxigenases/genética , Tamoxifeno/química , Tamoxifeno/metabolismo , Taurina/análogos & derivados , Taurina/química , Taurina/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...