Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Appl Clin Inform ; 2024 Jul 17.
Artigo em Inglês | MEDLINE | ID: mdl-39019475

RESUMO

Please see title page and main document for latest version of abstract.

2.
J Phys Chem A ; 128(6): 1085-1097, 2024 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-38294200

RESUMO

The complexation behavior of carbamoylmethylphosphine oxide ligands (CMPO), a bifunctional phosphine oxide, and their substituted derivatives with Ce(III), Eu(III), Th(IV), U(VI), and Am(III) was probed at the density functional theory (DFT) level. The enhanced extraction of trivalent rare earth elements by the 2-diphenylphosphinylethyl derivative over the conventional CMPO ligand is identified due to the availability of an additional P═O donor group in the former. In addition, the orbital and dispersive interactions play a vital role in the preference of Th(IV) over U(VI) during extraction using CMPO ligands. The better complexing ability of ligands having long alkyl chain substituents at the P atom is justified due to the observed enhanced dispersion interactions in these systems.

3.
J Phys Chem A ; 127(32): 6722-6731, 2023 Aug 17.
Artigo em Inglês | MEDLINE | ID: mdl-37540583

RESUMO

The effect of cyclic and aromatic substituents on the complexation behavior of phosphine oxide ligands with Am(III) and Eu(III) was investigated at density functional theory (DFT) and domain-based local pair natural orbital coupled-cluster (DLPNO-CC) levels. Combining DFT with accurate coupled cluster methods, we have evaluated the dispersion energy contributions to the complexation energies for trivalent Am and Eu complexes for the first time. Irrespective of the nature of substituents on the P atom, the electronic structure of the P═O group remains identical in all of the ligands. The study reveals the importance of dispersion interactions during complexation and is estimated to be more significant for Am(III) than for Eu(III) complexes.

4.
Inorg Chem ; 61(33): 13047-13057, 2022 Aug 22.
Artigo em Inglês | MEDLINE | ID: mdl-35942987

RESUMO

The electronic structure and complexation behavior of methyl-substituted phosphinic acids with U(VI) and Pu(IV) were explored by applying quantum chemical methods. In contrast to Ingold's classification, our results indicate that the methyl group is electron-withdrawing, reducing the phosphoryl group electron density in substituted phosphinic acids. The magnitude of the computed complexation energy values increases along with the series, PA → MPA → DMPA, and MP → MMP → MDMP, implying an increasing complexation tendency upon methyl group substitution for both U(VI) and Pu(IV) complexes. One of the nitrate groups in UO2(NO3)2•2L complexes (L = PA, MPA, and DMPA) is in monodentate coordination mode due to the additional stability gained from O2N-O···H hydrogen bonding interactions with the acidic H atoms of respective ligands. The calculation indicates marginally stronger metal-ligand interactions in Pu(IV) complexes compared to that in U(VI), which is supported by the computed complexation energies, M-OP bond lengths, ν(P═O), the extent of metal-ligand charge transfer, and properties of M-OP bond critical points. The energy landscape of substituted phosphinic acid ligands is further analyzed within the framework of the activation strain model to explain the energetic preference of certain conformers.

5.
J Phys Chem A ; 125(44): 9680-9690, 2021 Nov 11.
Artigo em Inglês | MEDLINE | ID: mdl-34710329

RESUMO

Deep eutectic solvents (DESs) based on metal halide salts are highly catalytic, low toxic, reusable, cost-effective, and have higher thermal stability than their analogue ionic liquids (ILs). In this work, we have reported the formation mechanism of metal salt-based DESs at the molecular level along with their charge-transfer analysis and thermodynamics associated with their formation using density functional theory. The DES systems analyzed in the present work were choline chloride and tin(II)chloride (DES1) and choline chloride and zinc(II)chloride (DES2), both in a molar ratio of 1:2, respectively. An excellent correlation is obtained between the theoretically calculated IR spectra of the DES systems and the previously reported experimental findings for the formation of the complex systems. The DESs were found to be stable systems due to traditional hydrogen bonding and electrostatic interactions resulting in the ionic species [Sn2Cl5]- and [Zn2Cl5]- and are elucidated with the help of electronic structure calculations. CHELPG partial charge analysis and natural bond orbital analysis suggest a charge transfer from Cl- (chloride) to Ch+ (choline) and metal salts in the DES structures. The atom-in-molecules and noncovalent interaction (NCI) analysis suggest a strong electrostatic interaction within the DES2 system as compared to DES1. Higher stability and reactivity are observed in the DES2 system based on the frontier molecular orbital analysis. Our analysis offers important insights into the formation mechanism of these economic IL analogues.

6.
J Phys Chem A ; 124(38): 7805-7815, 2020 Sep 24.
Artigo em Inglês | MEDLINE | ID: mdl-32856911

RESUMO

The electronic structure of ligands with phosphoryl and carbonyl binding sites and their complexation behavior with uranyl nitrate were investigated using density functional theory (DFT). The quantum chemical calculations indicate that the electronic charges on both phosphoryl and carbonyl groups are more polarized toward oxygen atoms in isolated ligands. This effect is predominant in the case of complexes of the former. Both P═O and C═O groups are positively charged with the exception in methylisobutylketone (MIBK), where the C=O group is virtually neutral. The fragment molecular orbital analysis suggests that during complexation, a certain amount of charge transfer occurs from the filled pπ-orbitals [πx(CO/PO) and πy(CO/PO)] of the ligand to 5f, 6d, and 7s orbitals of the uranium atom (fσ* and dsσ*). The NBO analysis reaffirms the charge transfer mechanism. The observed red shift in ν(C═O) and ν(P═O) identified in the simulated infrared spectrum of the corresponding complexes implies a moderate weakening of both carbonyl and phosphoryl bonds upon complexation. The atoms in molecules (AIM) analysis suggests a stronger phosphoryl binding compared to carbonyl interactions and an ionic U-O bond. The estimated complexation energies are considerable for phosphoryl ligands compared to those of the carbonyl analogue, with a reasonably large value derived for tri-n-butyl phosphate (TBP). The energy decomposition analysis marked significant stabilizing orbital interactions for phosphoryl ligands. The contributions of estimated dispersion energies are considerable in all complexes and extensively depend on the alkyl unit.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...