Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Phys Chem Chem Phys ; 21(6): 2977-2983, 2019 Feb 06.
Artigo em Inglês | MEDLINE | ID: mdl-30672534

RESUMO

The definition of the interplay between chemical composition, electro-magnetic configuration and catalytic activity requires a rational study of the orbital physics behind active materials. Apart from Coulomb forces, quantum spin exchange interactions (QSEI) are part of the potentials that differentiate the activity of magnetic oxides, strongly correlated electrocatalysts, in electron transfer reactions. Ferromagnetic (FM) cobalt oxides can show low overpotentials for the oxygen evolution reaction (OER) and the La1-XSrXCoO3-δ (0 ≤ X ≤ 1) family of perovskites is good ground to gain understanding of the electronic interactions in strongly correlated catalysts. In this case, Sr-doping raises the OER activity and the conductivity and increases FM spin moments. The efficiency of electrocatalysts based on Earth-abundant 3d-transition metals correlates with the interrelated factors: mild-bonding energies, the reduction of the electronic repulsions because of the QSEI in the open-shells, and enhanced spin delocalization in FM ordering. The reason for the outstanding OER activity of SrCoO3-δ is the accumulation of FM holes in the 3d-2p bonds, including the ligand orbitals, thus facilitating spin-selected charge transport and production of triplet O2 moieties from the oxidation of diamagnetic precursors. Spin-polarized oxygen atoms in the lattice can participate in O-O coupling and release of O2 in a Mars-Van Krevelen mechanistic fashion. We show that the stabilizing FM QSEI decrease the adsorption and activation energies during oxygen evolution and spin-dependent potentials are one of the factors that govern the catalytic activity of magnetic compositions: spintro-catalysis.

2.
Langmuir ; 28(5): 2643-51, 2012 Feb 07.
Artigo em Inglês | MEDLINE | ID: mdl-22216939

RESUMO

To study the surface structure of MgCl(2) support and its interaction with other active components in Ziegler-Natta catalyst, such as electron donors, we prepared a thin film analogue for Ziegler-Natta ethylene polymerization catalyst support by spin-coating a solution of MgCl(2) in ethanol, optionally containing a diester internal donor (diisobutyl-ortho-phthalate, DIBP) on a flat Si crystal surface. The donor content of these films was quantified by applying attenuated total internal reflection-Fourier transform infrared spectroscopy (ATR-FTIR) and X-ray photoelectron spectroscopy (XPS). Changes in the interaction of DIBP with MgCl(2) at various temperatures were monitored by in situ ATR-FTIR. Upon increasing the temperature, a shift in the (C═O) band toward lower wavenumbers was observed together with the depletion of (O-H) stretching band due to the desorption of residual ethanol. We assign this shift to gradual redistribution of adsorbed DIBP from adsorption sites on the MgCl(2) (104) surface toward the more acidic MgCl(2) (110) surface. The morphologies of MgCl(2) and MgCl(2)/DIBP films were studied by transmission electron microscopy (TEM) revealing a preferential orientation of ClMgCl layers (001) parallel to the lateral film dimensions. This orientation becomes more pronounced upon annealing. In the absence of donor, the MgCl(2) grow in to large crystals aligned in large domains upon annealing. Both crystal growth and alignment is impeded by the presence of donor.


Assuntos
Dibutilftalato/análogos & derivados , Cloreto de Magnésio/química , Membranas Artificiais , Adsorção , Catálise , Dibutilftalato/síntese química , Dibutilftalato/química , Etanol/química , Etilenos/síntese química , Etilenos/química , Tamanho da Partícula , Silício/química , Espectroscopia de Infravermelho com Transformada de Fourier , Propriedades de Superfície
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...