Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Science ; 287(5461): 2204-15, 2000 Mar 24.
Artigo em Inglês | MEDLINE | ID: mdl-10731134

RESUMO

A comparative analysis of the genomes of Drosophila melanogaster, Caenorhabditis elegans, and Saccharomyces cerevisiae-and the proteins they are predicted to encode-was undertaken in the context of cellular, developmental, and evolutionary processes. The nonredundant protein sets of flies and worms are similar in size and are only twice that of yeast, but different gene families are expanded in each genome, and the multidomain proteins and signaling pathways of the fly and worm are far more complex than those of yeast. The fly has orthologs to 177 of the 289 human disease genes examined and provides the foundation for rapid analysis of some of the basic processes involved in human disease.


Assuntos
Caenorhabditis elegans/genética , Drosophila melanogaster/genética , Genoma , Proteoma , Saccharomyces cerevisiae/genética , Animais , Apoptose/genética , Evolução Biológica , Caenorhabditis elegans/química , Caenorhabditis elegans/fisiologia , Adesão Celular/genética , Ciclo Celular/genética , Drosophila melanogaster/química , Drosophila melanogaster/fisiologia , Proteínas Fúngicas/química , Proteínas Fúngicas/genética , Genes Duplicados , Doenças Genéticas Inatas/genética , Genética Médica , Proteínas de Helminto/química , Proteínas de Helminto/genética , Humanos , Imunidade/genética , Proteínas de Insetos/química , Proteínas de Insetos/genética , Família Multigênica , Neoplasias/genética , Estrutura Terciária de Proteína , Saccharomyces cerevisiae/química , Saccharomyces cerevisiae/fisiologia , Transdução de Sinais/genética
2.
Nucleic Acids Res ; 27(1): 74-8, 1999 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-9847146

RESUMO

The Saccharomyces Genome Database (SGD) collects and organizes information about the molecular biology and genetics of the yeast Saccharomyces cerevisiae. The latest protein structure and comparison tools available at SGD are presented here. With the completion of the yeast sequence and the Caenorhabditis elegans sequence soon to follow, comparison of proteins from complete eukaryotic proteomes will be an extremely powerful way to learn more about a particular protein's structure, its function, and its relationships with other proteins. SGD can be accessed through the World Wide Web at http://genome-www.stanford.edu/Saccharomyces/


Assuntos
Bases de Dados Factuais , Proteínas Fúngicas/química , Genoma Fúngico , Saccharomyces cerevisiae/genética , Biologia Computacional , Internet , Conformação Proteica , Saccharomyces cerevisiae/química , Homologia de Sequência de Aminoácidos , Software
3.
Science ; 282(5396): 2022-8, 1998 Dec 11.
Artigo em Inglês | MEDLINE | ID: mdl-9851918

RESUMO

Comparative analysis of predicted protein sequences encoded by the genomes of Caenorhabditis elegans and Saccharomyces cerevisiae suggests that most of the core biological functions are carried out by orthologous proteins (proteins of different species that can be traced back to a common ancestor) that occur in comparable numbers. The specialized processes of signal transduction and regulatory control that are unique to the multicellular worm appear to use novel proteins, many of which re-use conserved domains. Major expansion of the number of some of these domains seen in the worm may have contributed to the advent of multicellularity. The proteins conserved in yeast and worm are likely to have orthologs throughout eukaryotes; in contrast, the proteins unique to the worm may well define metazoans.


Assuntos
Caenorhabditis elegans/química , Proteínas Fúngicas/química , Proteínas de Helminto/química , Saccharomyces cerevisiae/química , Animais , Caenorhabditis elegans/genética , Caenorhabditis elegans/fisiologia , Evolução Molecular , Proteínas Fúngicas/genética , Proteínas Fúngicas/fisiologia , Regulação da Expressão Gênica , Genes Fúngicos , Genes de Helmintos , Proteínas de Helminto/genética , Proteínas de Helminto/fisiologia , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/fisiologia , Homologia de Sequência de Aminoácidos , Transdução de Sinais
4.
Nucleic Acids Res ; 26(1): 73-9, 1998 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-9399804

RESUMO

The Saccharomyces Genome Database (SGD) provides Internet access to the complete Saccharomyces cerevisiae genomic sequence, its genes and their products, the phenotypes of its mutants, and the literature supporting these data. The amount of information and the number of features provided by SGD have increased greatly following the release of the S.cerevisiae genomic sequence, which is currently the only complete sequence of a eukaryotic genome. SGD aids researchers by providing not only basic information, but also tools such as sequence similarity searching that lead to detailed information about features of the genome and relationships between genes. SGD presents information using a variety of user-friendly, dynamically created graphical displays illustrating physical, genetic and sequence feature maps. SGD can be accessed via the World Wide Web at http://genome-www.stanford.edu/Saccharomyces/


Assuntos
Bases de Dados Factuais , Genoma Fúngico , Saccharomyces cerevisiae/genética , Sequência de Bases , Bases de Dados Bibliográficas , Genes Fúngicos , Armazenamento e Recuperação da Informação , Homologia de Sequência do Ácido Nucleico , Terminologia como Assunto
5.
Yeast ; 14(16): 1453-69, 1998 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-9885151

RESUMO

The completion of the Saccharomyces cerevisiae genome sequencing project and the continued development of improved technology for large-scale genome analysis have led to tremendous growth in the amount of new yeast genetics and molecular biology data. Efficient organization, presentation, and dissemination of this information are essential if researchers are to exploit this knowledge. In addition, the development of tools that provide efficient analysis of this information and link it with pertinent information from other systems is becoming increasingly important at a time when the complete genome sequences of other organisms are becoming available. The aim of this review is to familiarize biologists with the type of data resources currently available on the World Wide Web (WWW).


Assuntos
Bases de Dados Factuais , Internet , Leveduras , Sequência de Aminoácidos , Sequência de Bases , Bases de Dados Bibliográficas , Proteínas Fúngicas/química , Proteínas Fúngicas/genética , Genoma Fúngico , Leveduras/genética
7.
Annu Rev Cell Dev Biol ; 13: 457-512, 1997.
Artigo em Inglês | MEDLINE | ID: mdl-9442881

RESUMO

The chemosensory pathway of bacterial chemotaxis has become a paradigm for the two-component superfamily of receptor-regulated phosphorylation pathways. This simple pathway illustrates many of the fundamental principles and unanswered questions in the field of signaling biology. A molecular description of pathway function has progressed rapidly because it is accessible to diverse structural, biochemical, and genetic approaches. As a result, structures are emerging for most of the pathway elements, biochemical studies are elucidating the mechanisms of key signaling events, and genetic methods are revealing the intermolecular interactions that transmit information between components. Recent advances include (a) the first molecular picture of a conformational transmembrane signal in a cell surface receptor, (b) four new structures of kinase domains and adaptation enzymes, and (c) significant new insights into the mechanisms of receptor-mediated kinase regulation, receptor adaptation, and the phospho-activation of signaling proteins. Overall, the chemosensory pathway and the propulsion system it regulates provide an ideal system in which to probe molecular principles underlying complex cellular signaling and behavior.


Assuntos
Fenômenos Fisiológicos Bacterianos , Quimiotaxia , Transdução de Sinais/fisiologia , Proteínas de Bactérias , Células Quimiorreceptoras/fisiologia , Histidina Quinase , Proteínas Quinases , Receptores de Superfície Celular , Solubilidade
8.
Proc Natl Acad Sci U S A ; 93(6): 2545-50, 1996 Mar 19.
Artigo em Inglês | MEDLINE | ID: mdl-8637911

RESUMO

The aspartate receptor of bacterial chemotaxis is representative of a large class of membrane-spanning receptors found in prokaryotic and eukaryotic organisms. These receptors, which regulate histidine kinase pathways and possess two putative transmembrane helices per subunit, appear to control a wide variety of cellular processes. The best characterized subgroup of the two-helix receptor class is the homologous family of chemosensory receptors from Escherichia coli and Salmonella typhimurium, including the aspartate receptor. This receptor binds aspartate, an attractant, in the periplasmic compartment and undergoes an intramolecular, transmembrane conformational change, thereby modulating the autophosphorylation rate of a bound histidine kinase in the cytoplasm. Here, we analyze recent results from x-ray crystallographic, solution 19F NMR, and engineered disulfide studies probing the aspartate-induced structural change within the periplasmic and transmembrane regions of the receptor. Together, these approaches provide evidence that aspartate binding triggers a "swinging-piston" displacement of the second membrane-spanning helix, which is proposed to communicate the signal across the bilayer.


Assuntos
Células Quimiorreceptoras/química , Receptores de Aminoácido/fisiologia , Transdução de Sinais , Ácido Aspártico , Proteínas de Bactérias , Dissulfetos/química , Ativação Enzimática , Histidina Quinase , Proteínas de Membrana/química , Modelos Moleculares , Movimento (Física) , Conformação Proteica , Proteínas Quinases/metabolismo , Receptores de Aminoácido/química , Salmonella typhimurium
9.
J Biol Chem ; 270(41): 24043-53, 1995 Oct 13.
Artigo em Inglês | MEDLINE | ID: mdl-7592603

RESUMO

The aspartate receptor of the bacterial chemotaxis pathway regulates the autophosphorylation rate of a cytoplasmic histidine kinase in response to ligand binding. The transmembrane signal, which is transmitted from the periplasmic aspartate-binding domain to the cytoplasmic regulatory domain, is carried by an intramolecular conformational change within the homodimeric receptor structure. The present work uses engineered cysteines and disulfide bonds to probe the nature of this conformational change, focusing in particular on the role of the second transmembrane alpha-helix. Altogether 26 modifications, consisting of 13 cysteine pairs and the corresponding disulfide bonds, have been introduced into the contacts between the second transmembrane helix and adjacent helices. The effects of these modifications on the transmembrane signal have been quantified by in vitro assays which measure (i) ligand binding, (ii) receptor-mediated regulation of kinase activity, and (iii) receptor methylation. All three parameters are observed to be highly sensitive to perturbations of the second transmembrane helix. In particular, 13 of the 26 modifications (6 cysteine pairs and 7 disulfides) significantly increase or decrease aspartate affinity, while 15 of the 26 modifications (6 cysteine pairs and 10 disulfides) destroy transmembrane kinase regulation. Importantly, 3 of the perturbing disulfides are found to lock the receptor in the "on" or "off" signaling state by covalently constraining the second transmembrane helix, demonstrating that it is possible to use engineered disulfides to lock the signaling function of a receptor protein. A separate aspect of the study probes the thermal motions of the second transmembrane helix: 4 disulfides designed to trap large amplitude twisting motions are observed to disrupt function but form readily, suggesting that the helix is mobile. Together the results support a model in which the second transmembrane helix is a mobile signaling element responsible for communicating the transmembrane signal.


Assuntos
Quimiotaxia , Dissulfetos , Estrutura Secundária de Proteína , Receptores de Aminoácido/química , Receptores de Aminoácido/fisiologia , Salmonella typhimurium/fisiologia , Transdução de Sinais , Sequência de Aminoácidos , Ácido Aspártico/metabolismo , Membrana Celular/fisiologia , Clonagem Molecular , Cisteína , Histidina Quinase , Cinética , Modelos Estruturais , Mutagênese Sítio-Dirigida , Oxirredução , Fosforilação , Mutação Puntual , Conformação Proteica , Engenharia de Proteínas , Proteínas Quinases/metabolismo , Proteínas Recombinantes/química , Proteínas Recombinantes/metabolismo , Salmonella typhimurium/genética
10.
Biochemistry ; 34(30): 9722-33, 1995 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-7626643

RESUMO

Ligand binding to the periplasmic domain of the transmembrane aspartate receptor generates an intramolecular conformational change which spans the bilayer and ultimately signals the cytoplasmic CheA histidine kinase, thereby triggering chemotaxis. The receptor is a homodimer stabilized by the interface between its two identical subunits: the present study investigates the role of the periplasmic and transmembrane regions of this interface in the mechanism of transmembrane signaling. Free cysteines and disulfide bonds are engineered into selected interfacial positions, and the resulting effects on the transmembrane signal are assayed by monitoring in vitro regulation of kinase activity. Three of the 14 engineered cysteine pairs examined, as well as six of the 14 engineered disulfides, cause perturbations of the interface structure which essentially destroy transmembrane regulation of the kinase. The remaining 11 cysteine pairs, and eight engineered disulfides covalently linking the two subunits at locations spanning positions 18-75, are observed to retain significant transmembrane kinase regulation. The eight functional disulfides positively identify adjacent faces of the two N-terminal helices in the native receptor dimer and indicate that large regions of the periplasmic and transmembrane subunit interface remain effectively static during the transmembrane signal. The results are consistent with a model in which the subunit interface plays a structural role, while the second membrane-spanning helix transmits the ligand-induced signal across the bilayer to the kinase binding domain. The effects of engineered cysteines and disulfides on receptor methylation in vitro are also measured, enabling direct comparison of the in vitro methylation and phosphorylation assays.


Assuntos
Membrana Celular/metabolismo , Dissulfetos/química , Receptores de Aminoácido/química , Receptores de Aminoácido/fisiologia , Transdução de Sinais , Clonagem Molecular , Cisteína/química , Escherichia coli , Metilação , Mutagênese Sítio-Dirigida , Fosforilação , Engenharia de Proteínas , Estrutura Secundária de Proteína , Receptores de Aminoácido/genética , Proteínas Recombinantes , Salmonella typhimurium/química , Relação Estrutura-Atividade
11.
J Biol Chem ; 268(18): 13089-96, 1993 Jun 25.
Artigo em Inglês | MEDLINE | ID: mdl-8514750

RESUMO

The Escherichia coli CheY protein is activated by phosphorylation, and in turn alters flagellar rotation. To investigate the molecular mechanism of activation, an extensive collection of mutant CheY proteins was analyzed by behavioral assays, in vitro phosphorylation, and 19F NMR chemical shift measurements. Substitution of a positively charged residue (Arg or Lys) in place of Asp13 in the CheY activation site results in activation, even for mutants which cannot be phosphorylated. Thus phosphorylation plays an indirect role in the activation mechanism. Lys109, a residue proposed to act as a conformational "switch" in the activation site, is required for activation of CheY by either phosphorylation or mutation. The 19F NMR chemical shift assay described in the preceding article (Drake, S. K., Bourret, R. B., Luck, L. A., Simon, M. I., and Falke, J. J. (1993) J. Biol Chem. 268, 13081-13088) was again used to monitor six phenylalanine positions in CheY, including one position which probed the vicinity of Lys109. Mutations which activate CheY were observed to perturb the Lys109 probe, providing further evidence that Lys109 is directly involved in the activating conformational change. Two striking contrasts were observed between activation by mutation and phosphorylation. (i) Each activating mutation generates a relatively localized perturbation in the activation site region, whereas phosphorylation triggers a global structural change. (ii) The perturbation of the Lys109 region observed for activating mutations is not detected in the phosphorylated protein. These results are consistent with a two-step model of activated CheY docking to the flagellar switch.


Assuntos
Proteínas de Bactérias , Quimiotaxia , Proteínas de Membrana/metabolismo , Escherichia coli/metabolismo , Proteínas de Escherichia coli , Flúor , Espectroscopia de Ressonância Magnética , Proteínas de Membrana/química , Proteínas de Membrana/genética , Proteínas Quimiotáticas Aceptoras de Metil , Mutação , Fosforilação , Conformação Proteica , Engenharia de Proteínas
12.
J Mol Biol ; 229(2): 398-418, 1993 Jan 20.
Artigo em Inglês | MEDLINE | ID: mdl-8429554

RESUMO

The acidic carboxy-terminal 89-amino acid fragment of bacteriophage T4 gene 32 protein was expressed in Escherichia coli to high levels from an inducible plasmid construct. Infection of induced cells by wild-type T4 phage results in impaired phage DNA synthesis. The time at which DNA synthesis begins and the diminution in DNA synthesis rates correlate with the amount of carboxy-terminal peptide that accumulates intracellularly prior to infection. Correspondingly, when induced cells are infected with viable phage containing a small deletion near the carboxy-terminus of 32 protein (delta PR201), the inhibition of phage DNA synthesis was much more severe. The mutant 32 protein competes less well against overproduced wild-type acid peptide than does wild-type 32 protein. The purified acid peptide, when used as the attached ligand for affinity chromatography, binds several T4 proteins from phage-infected cells, including 43 protein (T4 DNA polymerase), Dda protein (a DNA helicase), and UvsX protein (a Rec-like recombination protein). Furthermore, at 50- to 100-fold molar excess of acid peptide over intact 32 protein, phage DNA synthesis was specifically inhibited at the initiation step in an in vitro 5-protein DNA replication experiment. We propose that one or more phage replication proteins are titrated as non-productive protein-protein complexes at a site away from the DNA template. This implies that the carboxy-terminal domain of 32 protein is involved in an obligate step of replication machine assembly when the protein is properly attached to ssDNA in the vicinity of a primer-template junction. The assembly defect we observe is strikingly similar to the repression, or "squelching", of the activity of certain eukaryotic transcriptional activators.


Assuntos
Bacteriófago T4/genética , Replicação do DNA/genética , DNA Viral/biossíntese , Proteínas de Ligação a DNA/genética , Proteínas Virais/genética , Sequência de Aminoácidos , Bacteriófago T4/fisiologia , Sequência de Bases , Cromatografia de Afinidade , Eletroforese em Gel de Poliacrilamida , Dados de Sequência Molecular , Reação em Cadeia da Polimerase , Ligação Proteica
13.
J Virol ; 63(3): 1420-7, 1989 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-2536842

RESUMO

A 272-base-pair (bp) portion of the simian virus 40 regulatory region containing the replication origin, Sp1-binding region, and part of the 72-bp direct repeats makes up a minimal late promoter that is able to direct late-direction RNA synthesis in vivo and in vitro. Fourteen linker-scan mutants within this region were characterized. Mutations in the Sp1-binding region decreased late expression both in vivo and in vitro. By contrast, mutations that eliminate genetically defined elements of the early transcriptional enhancer or that prevent binding of the transcription factors AP-1, AP-2, and AP-3 in the 72-bp repeat region had little or no effect on late-direction expression. These results argue that, at least under certain circumstances, the early transcriptional enhancer sequences are not required for simian virus 40 late gene expression.


Assuntos
Elementos Facilitadores Genéticos , Regiões Promotoras Genéticas , Sequências Reguladoras de Ácido Nucleico , Vírus 40 dos Símios/genética , Evolução Biológica , Análise Mutacional de DNA , Regulação da Expressão Gênica , RNA Viral/biossíntese , Transcrição Gênica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...