Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Tipo de estudo
Intervalo de ano de publicação
1.
Nucleic Acids Res ; 47(2): 648-665, 2019 01 25.
Artigo em Inglês | MEDLINE | ID: mdl-30418618

RESUMO

How chromosomes are folded, spatially organized and regulated in three dimensions inside the cell nucleus are among the longest standing questions in cell biology. Genome-wide chromosome conformation capture (Hi-C) technique allowed identifying and characterizing spatial chromatin compartments in several mammalian species. Here, we present the first genome-wide analysis of chromatin interactions in chicken embryonic fibroblasts (CEF) and adult erythrocytes. We showed that genome of CEF is partitioned into topologically associated domains (TADs), distributed in accordance with gene density, transcriptional activity and CTCF-binding sites. In contrast to mammals, where all examined somatic cell types display relatively similar spatial organization of genome, chicken erythrocytes strongly differ from fibroblasts, showing pronounced A- and B- compartments, absence of typical TADs and formation of long-range chromatin interactions previously observed on mitotic chromosomes. Comparing mammalian and chicken genome architectures, we provide evidence highlighting evolutionary role of chicken TADs and their significance in genome activity and regulation.


Assuntos
Galinhas/genética , Cromatina/ultraestrutura , Eritrócitos/ultraestrutura , Evolução Molecular , Animais , Núcleo Celular/genética , Fibroblastos/ultraestrutura , Genoma
2.
Chromosome Res ; 23(3): 495-503, 2015 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-26363798

RESUMO

Transcription of tandemly repetitive DNA in embryogenesis seems to be of special interest due to a crucial role of non-coding RNAs in many aspects of development. However, only a few data are available on tandem repeats transcription at subtelomere regions of chromosomes during vertebrate embryogenesis. To reduce this gap, we examined stage and tissue-specific pattern of subtelomeric PO41 (pattern of 41 bp) tandem repeat transcription during embryogenesis of chicken (Gallus gallus domesticus). Using whole-mount RNA fluorescent in situ hybridization and reverse transcription PCR with specific primers, we demonstrated that both strands of PO41 repeat are transcribed at each of the studied stages of chicken embryo development: from 7-8 HH to 20 HH stages. Subtelomere-derived transcripts localize in the nuclei of all cell types and throughout the all embryonic bodies: head, somites, tail, wings and buds. In embryo-dividing cells and cultured embryonic fibroblasts, PO41 RNAs envelop terminal regions of chromosomes. PO41-containing RNAs are predominantly single-stranded and can be polyadenylated, indicating appearance of non-nascent form of subtelomeric transcripts. PO41 repeat RNAs represent a rare example of ubiquitously transcribed non-coding RNAs, such as Xist/XIST RNA or telomere repeat-containing RNA. Distribution of PO41 repeat transcripts at different stages of embryo development and among cell types has extremely uniform pattern, indicating on possible universal functions of PO41 non-coding RNAs.


Assuntos
Galinhas/genética , Desenvolvimento Embrionário/genética , Regulação da Expressão Gênica no Desenvolvimento , Sequências de Repetição em Tandem , Telômero/genética , Transcrição Gênica , Animais , Divisão Celular/genética , Embrião de Galinha , Fibroblastos/metabolismo , Expressão Gênica , Hibridização In Situ , Reação em Cadeia da Polimerase Via Transcriptase Reversa
3.
J Bacteriol ; 190(8): 3036-45, 2008 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-18296520

RESUMO

RecAX53 is a chimeric variant of the Escherichia coli RecA protein (RecAEc) that contains a part of the central domain of Pseudomonas aeruginosa RecA (RecAPa), encompassing a region that differs from RecAEc at 12 amino acid positions. Like RecAPa, this chimera exhibits hyperrecombination activity in E. coli cells, increasing the frequency of recombination exchanges per DNA unit length (FRE). RecAX53 confers the largest increase in FRE observed to date. The contrasting properties of RecAX53 and RecAPa are manifested by in vivo differences in the dependence of the FRE value on the integrity of the mutS gene and thus in the ratio of conversion and crossover events observed among their hyperrecombination products. In strains expressing the RecAPa or RecAEc protein, crossovers are the main mode of hyperrecombination. In contrast, conversions are the primary result of reactions promoted by RecAX53. The biochemical activities of RecAX53 and its ancestors, RecAEc and RecAPa, have been compared. Whereas RecAPa generates a RecA presynaptic complex (PC) that is more stable than that of RecAEc, RecAX53 produces a more dynamic PC (relative to both RecAEc and RecAPa). The properties of RecAX53 result in a more rapid initiation of the three-strand exchange reaction but an inability to complete the four-strand transfer. This indicates that RecAX53 can form heteroduplexes rapidly but is unable to convert them into crossover configurations. A more dynamic RecA activity thus translates into an increase in conversion events relative to crossovers.


Assuntos
Escherichia coli/enzimologia , Pseudomonas aeruginosa/enzimologia , Recombinases Rec A/genética , Recombinases Rec A/metabolismo , Proteínas Recombinantes de Fusão/genética , Proteínas Recombinantes de Fusão/metabolismo , Recombinação Genética , Troca Genética , DNA Bacteriano/metabolismo , Rearranjo Gênico , Cinética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...