Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nanoscale Adv ; 4(4): 1026-1059, 2022 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-36131777

RESUMO

Magnetic nanoparticles offer unique potential for various technological, biomedical, or environmental applications thanks to the size-, shape- and material-dependent tunability of their magnetic properties. To optimize particles for a specific application, it is crucial to interrelate their performance with their structural and magnetic properties. This review presents the advantages of small-angle X-ray and neutron scattering techniques for achieving a detailed multiscale characterization of magnetic nanoparticles and their ensembles in a mesoscopic size range from 1 to a few hundred nanometers with nanometer resolution. Both X-rays and neutrons allow the ensemble-averaged determination of structural properties, such as particle morphology or particle arrangement in multilayers and 3D assemblies. Additionally, the magnetic scattering contributions enable retrieving the internal magnetization profile of the nanoparticles as well as the inter-particle moment correlations caused by interactions within dense assemblies. Most measurements are used to determine the time-averaged ensemble properties, in addition advanced small-angle scattering techniques exist that allow accessing particle and spin dynamics on various timescales. In this review, we focus on conventional small-angle X-ray and neutron scattering (SAXS and SANS), X-ray and neutron reflectometry, gracing-incidence SAXS and SANS, X-ray resonant magnetic scattering, and neutron spin-echo spectroscopy techniques. For each technique, we provide a general overview, present the latest scientific results, and discuss its strengths as well as sample requirements. Finally, we give our perspectives on how future small-angle scattering experiments, especially in combination with micromagnetic simulations, could help to optimize the performance of magnetic nanoparticles for specific applications.

2.
Nat Commun ; 7: 11648, 2016 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-27248368

RESUMO

The advance of magnetic nanotechnologies relies on detailed understanding of nanoscale magnetic mechanisms in materials. Magnetic domain memory (MDM), that is, the tendency for magnetic domains to repeat the same pattern during field cycling, is important for magnetic recording technologies. Here we demonstrate MDM in [Co/Pd]/IrMn films, using coherent X-ray scattering. Under illumination, the magnetic domains in [Co/Pd] produce a speckle pattern, a unique fingerprint of their nanoscale configuration. We measure MDM by cross-correlating speckle patterns throughout magnetization processes. When cooled below its blocking temperature, the film exhibits up to 100% MDM, induced by exchange-coupling with the underlying IrMn layer. The degree of MDM drastically depends on cooling conditions. If the film is cooled under moderate fields, MDM is high throughout the entire magnetization loop. If the film is cooled under nearly saturating field, MDM vanishes, except at nucleation and saturation. Our findings show how to fully control the occurrence of MDM by field cooling.

3.
J Nanosci Nanotechnol ; 15(5): 3809-15, 2015 May.
Artigo em Inglês | MEDLINE | ID: mdl-26505009

RESUMO

Zinc oxide nanomaterials were synthesized with small amounts of magnetic ions to create dilute magnetic semiconductors (DMS), by using a low temperature sol-gel method. Conditions were controlled such that a range of amounts of Co, Ni and Mn were incorporated. The incorporation could be tracked by color changes in the powders to blue for Co, green for Ni and yellow for Mn. XRD measurements showed the ZnO has the wurtzite structure with crystallites 8-12 nm in diameter. Nanoparticles were observed by SEM and TEM and TEM showed that the lattice fringes of different nanoparticles align. Nanoparticle alignment was disrupted when high concentrations of metal dopants were incorporated. Magnetic measurements showed a change in behavior from diamagnetic to paramagnetic with increasing concentration of metal dopants.

4.
Phys Rev Lett ; 93(25): 257208, 2004 Dec 17.
Artigo em Inglês | MEDLINE | ID: mdl-15697938

RESUMO

We present a study of the prototypical NiO(111) antiferromagnet by nonresonant surface x-ray magnetic scattering. Direct access to the antiferromagnetic surface and bulk spin ordering is demonstrated. Our data support a first order antiferromagnetic to paramagnetic transition. A quantitative determination of the magnetization profile is proposed. It is shown that the NiO(111) surface spins remain ordered at higher temperatures than in the bulk and that the blocking temperature in exchange coupled ferromagnetic-NiO interfaces is most likely related to an S-domain structure loss occurring 25 K below the Ne el temperature.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...