Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 47
Filtrar
1.
Sci Data ; 10(1): 813, 2023 11 20.
Artigo em Inglês | MEDLINE | ID: mdl-37985666

RESUMO

Somatic mosaicism is defined as an occurrence of two or more populations of cells having genomic sequences differing at given loci in an individual who is derived from a single zygote. It is a characteristic of multicellular organisms that plays a crucial role in normal development and disease. To study the nature and extent of somatic mosaicism in autism spectrum disorder, bipolar disorder, focal cortical dysplasia, schizophrenia, and Tourette syndrome, a multi-institutional consortium called the Brain Somatic Mosaicism Network (BSMN) was formed through the National Institute of Mental Health (NIMH). In addition to genomic data of affected and neurotypical brains, the BSMN also developed and validated a best practices somatic single nucleotide variant calling workflow through the analysis of reference brain tissue. These resources, which include >400 terabytes of data from 1087 subjects, are now available to the research community via the NIMH Data Archive (NDA) and are described here.


Assuntos
Transtornos Mentais , Humanos , Transtorno do Espectro Autista/genética , Encéfalo , Genômica , Mosaicismo , Genoma Humano , Transtornos Mentais/genética
2.
Cell Genom ; 3(8): 100356, 2023 Aug 09.
Artigo em Inglês | MEDLINE | ID: mdl-37601975

RESUMO

While germline copy-number variants (CNVs) contribute to schizophrenia (SCZ) risk, the contribution of somatic CNVs (sCNVs)-present in some but not all cells-remains unknown. We identified sCNVs using blood-derived genotype arrays from 12,834 SCZ cases and 11,648 controls, filtering sCNVs at loci recurrently mutated in clonal blood disorders. Likely early-developmental sCNVs were more common in cases (0.91%) than controls (0.51%, p = 2.68e-4), with recurrent somatic deletions of exons 1-5 of the NRXN1 gene in five SCZ cases. Hi-C maps revealed ectopic, allele-specific loops forming between a potential cryptic promoter and non-coding cis-regulatory elements upon 5' deletions in NRXN1. We also observed recurrent intragenic deletions of ABCB11, encoding a transporter implicated in anti-psychotic response, in five treatment-resistant SCZ cases and showed that ABCB11 is specifically enriched in neurons forming mesocortical and mesolimbic dopaminergic projections. Our results indicate potential roles of sCNVs in SCZ risk.

3.
Biol Psychiatry ; 91(1): 92-101, 2022 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-34154796

RESUMO

BACKGROUND: While schizophrenia differs between males and females in the age of onset, symptomatology, and disease course, the molecular mechanisms underlying these differences remain uncharacterized. METHODS: To address questions about the sex-specific effects of schizophrenia, we performed a large-scale transcriptome analysis of RNA sequencing data from 437 controls and 341 cases from two distinct cohorts from the CommonMind Consortium. RESULTS: Analysis across the cohorts identified a reproducible gene expression signature of schizophrenia that was highly concordant with previous work. Differential expression across sex was reproducible across cohorts and identified X- and Y-linked genes, as well as those involved in dosage compensation. Intriguingly, the sex expression signature was also enriched for genes involved in neurexin family protein binding and synaptic organization. Differential expression analysis testing a sex-by-diagnosis interaction effect did not identify any genome-wide signature after multiple testing corrections. Gene coexpression network analysis was performed to reduce dimensionality from thousands of genes to dozens of modules and elucidate interactions among genes. We found enrichment of coexpression modules for sex-by-diagnosis differential expression signatures, which were highly reproducible across the two cohorts and involved a number of diverse pathways, including neural nucleus development, neuron projection morphogenesis, and regulation of neural precursor cell proliferation. CONCLUSIONS: Overall, our results indicate that the effect size of sex differences in schizophrenia gene expression signatures is small and underscore the challenge of identifying robust sex-by-diagnosis signatures, which will require future analyses in larger cohorts.


Assuntos
Esquizofrenia , Transcriptoma , Encéfalo , Feminino , Perfilação da Expressão Gênica , Humanos , Masculino , Esquizofrenia/genética , Caracteres Sexuais
4.
Genome Biol ; 22(1): 92, 2021 03 29.
Artigo em Inglês | MEDLINE | ID: mdl-33781308

RESUMO

BACKGROUND: Post-zygotic mutations incurred during DNA replication, DNA repair, and other cellular processes lead to somatic mosaicism. Somatic mosaicism is an established cause of various diseases, including cancers. However, detecting mosaic variants in DNA from non-cancerous somatic tissues poses significant challenges, particularly if the variants only are present in a small fraction of cells. RESULTS: Here, the Brain Somatic Mosaicism Network conducts a coordinated, multi-institutional study to examine the ability of existing methods to detect simulated somatic single-nucleotide variants (SNVs) in DNA mixing experiments, generate multiple replicates of whole-genome sequencing data from the dorsolateral prefrontal cortex, other brain regions, dura mater, and dural fibroblasts of a single neurotypical individual, devise strategies to discover somatic SNVs, and apply various approaches to validate somatic SNVs. These efforts lead to the identification of 43 bona fide somatic SNVs that range in variant allele fractions from ~ 0.005 to ~ 0.28. Guided by these results, we devise best practices for calling mosaic SNVs from 250× whole-genome sequencing data in the accessible portion of the human genome that achieve 90% specificity and sensitivity. Finally, we demonstrate that analysis of multiple bulk DNA samples from a single individual allows the reconstruction of early developmental cell lineage trees. CONCLUSIONS: This study provides a unified set of best practices to detect somatic SNVs in non-cancerous tissues. The data and methods are freely available to the scientific community and should serve as a guide to assess the contributions of somatic SNVs to neuropsychiatric diseases.


Assuntos
Encéfalo/metabolismo , Estudos de Associação Genética , Variação Genética , Alelos , Mapeamento Cromossômico , Biologia Computacional/métodos , Estudos de Associação Genética/métodos , Genômica/métodos , Células Germinativas/metabolismo , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Especificidade de Órgãos/genética , Polimorfismo de Nucleotídeo Único
5.
Elife ; 102021 02 11.
Artigo em Inglês | MEDLINE | ID: mdl-33570494

RESUMO

Erythroblastic islands are a specialized niche that contain a central macrophage surrounded by erythroid cells at various stages of maturation. However, identifying the precise genetic and transcriptional control mechanisms in the island macrophage remains difficult due to macrophage heterogeneity. Using unbiased global sequencing and directed genetic approaches focused on early mammalian development, we find that fetal liver macrophages exhibit a unique expression signature that differentiates them from erythroid and adult macrophage cells. The importance of erythroid Krüppel-like factor (EKLF)/KLF1 in this identity is shown by expression analyses in EKLF-/- and in EKLF-marked macrophage cells. Single-cell sequence analysis simplifies heterogeneity and identifies clusters of genes important for EKLF-dependent macrophage function and novel cell surface biomarkers. Remarkably, this singular set of macrophage island cells appears transiently during embryogenesis. Together, these studies provide a detailed perspective on the importance of EKLF in the establishment of the dynamic gene expression network within erythroblastic islands in the developing embryo and provide the means for their efficient isolation.


Assuntos
Eritropoese/genética , Expressão Gênica , Fatores de Transcrição Kruppel-Like/genética , Macrófagos/fisiologia , Fatores de Transcrição Kruppel-Like/metabolismo
6.
Sci Data ; 6(1): 180, 2019 09 24.
Artigo em Inglês | MEDLINE | ID: mdl-31551426

RESUMO

Schizophrenia and bipolar disorder are serious mental illnesses that affect more than 2% of adults. While large-scale genetics studies have identified genomic regions associated with disease risk, less is known about the molecular mechanisms by which risk alleles with small effects lead to schizophrenia and bipolar disorder. In order to fill this gap between genetics and disease phenotype, we have undertaken a multi-cohort genomics study of postmortem brains from controls, individuals with schizophrenia and bipolar disorder. Here we present a public resource of functional genomic data from the dorsolateral prefrontal cortex (DLPFC; Brodmann areas 9 and 46) of 986 individuals from 4 separate brain banks, including 353 diagnosed with schizophrenia and 120 with bipolar disorder. The genomic data include RNA-seq and SNP genotypes on 980 individuals, and ATAC-seq on 269 individuals, of which 264 are a subset of individuals with RNA-seq. We have performed extensive preprocessing and quality control on these data so that the research community can take advantage of this public resource available on the Synapse platform at http://CommonMind.org .


Assuntos
Transtorno Bipolar , Esquizofrenia , Transtorno Bipolar/genética , Transtorno Bipolar/patologia , Estudos de Coortes , Epigenômica , Humanos , Córtex Pré-Frontal/metabolismo , Córtex Pré-Frontal/patologia , Esquizofrenia/genética , Esquizofrenia/patologia , Transcriptoma
7.
Nat Neurosci ; 22(9): 1402-1412, 2019 09.
Artigo em Inglês | MEDLINE | ID: mdl-31455887

RESUMO

RNA editing critically regulates neurodevelopment and normal neuronal function. The global landscape of RNA editing was surveyed across 364 schizophrenia cases and 383 control postmortem brain samples from the CommonMind Consortium, comprising two regions: dorsolateral prefrontal cortex and anterior cingulate cortex. In schizophrenia, RNA editing sites in genes encoding AMPA-type glutamate receptors and postsynaptic density proteins were less edited, whereas those encoding translation initiation machinery were edited more. These sites replicate between brain regions, map to 3'-untranslated regions and intronic regions, share common sequence motifs and overlap with binding sites for RNA-binding proteins crucial for neurodevelopment. These findings cross-validate in hundreds of non-overlapping dorsolateral prefrontal cortex samples. Furthermore, ~30% of RNA editing sites associate with cis-regulatory variants (editing quantitative trait loci or edQTLs). Fine-mapping edQTLs with schizophrenia risk loci revealed co-localization of eleven edQTLs with six loci. The findings demonstrate widespread altered RNA editing in schizophrenia and its genetic regulation, and suggest a causal and mechanistic role of RNA editing in schizophrenia neuropathology.


Assuntos
Córtex Cerebral/metabolismo , Edição de RNA/genética , Esquizofrenia/genética , Córtex Cerebral/fisiopatologia , Estudos de Coortes , Estudo de Associação Genômica Ampla , Humanos , Locos de Características Quantitativas/genética
8.
Nat Commun ; 9(1): 2914, 2018 07 25.
Artigo em Inglês | MEDLINE | ID: mdl-30046039

RESUMO

How gene expression correlates with schizophrenia across individuals is beginning to be examined through analyses of RNA-seq from postmortem brains of individuals with disease and control brains. Here we focus on variation in allele-specific expression, following up on the CommonMind Consortium (CMC) RNA-seq experiments of nearly 600 human dorsolateral prefrontal cortex (DLPFC) samples. Analyzing the extent of allelic expression bias-a hallmark of imprinting-we find that the number of imprinted human genes is consistent with lower estimates (≈0.5% of all genes), and thus contradicts much higher estimates. Moreover, the handful of putatively imprinted genes are all in close genomic proximity to known imprinted genes. Joint analysis of the imprinted genes across hundreds of individuals allowed us to establish how allelic bias depends on various factors. We find that age and genetic ancestry have gene-specific, differential effect on allelic bias. In contrast, allelic bias appears to be independent of schizophrenia.


Assuntos
Impressão Genômica/genética , Esquizofrenia/genética , Adulto , Idoso , Alelos , Feminino , Perfilação da Expressão Gênica , Humanos , Masculino , Pessoa de Meia-Idade , Polimorfismo de Nucleotídeo Único/genética , Adulto Jovem
9.
Genome Res ; 28(7): 1067-1078, 2018 07.
Artigo em Inglês | MEDLINE | ID: mdl-29764913

RESUMO

N6-Methyladenine (m6dA) has been discovered as a novel form of DNA methylation prevalent in eukaryotes; however, methods for high-resolution mapping of m6dA events are still lacking. Single-molecule real-time (SMRT) sequencing has enabled the detection of m6dA events at single-nucleotide resolution in prokaryotic genomes, but its application to detecting m6dA in eukaryotic genomes has not been rigorously examined. Herein, we identified unique characteristics of eukaryotic m6dA methylomes that fundamentally differ from those of prokaryotes. Based on these differences, we describe the first approach for mapping m6dA events using SMRT sequencing specifically designed for the study of eukaryotic genomes and provide appropriate strategies for designing experiments and carrying out sequencing in future studies. We apply the novel approach to study two eukaryotic genomes. For green algae, we construct the first complete genome-wide map of m6dA at single-nucleotide and single-molecule resolution. For human lymphoblastoid cells (hLCLs), it was necessary to integrate SMRT sequencing data with independent sequencing data. The joint analyses suggest putative m6dA events are enriched in the promoters of young full-length LINE-1 elements (L1s), but call for validation by additional methods. These analyses demonstrate a general method for rigorous mapping and characterization of m6dA events in eukaryotic genomes.


Assuntos
Eucariotos/genética , Genoma/genética , Linhagem Celular , Mapeamento Cromossômico/métodos , Metilação de DNA/genética , Humanos , Células Procarióticas/metabolismo , Regiões Promotoras Genéticas/genética , Análise de Sequência de DNA/métodos
10.
Biol Psychiatry ; 82(11): 794-805, 2017 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-28577753

RESUMO

BACKGROUND: Exposure to drugs of abuse alters the epigenetic landscape of the brain's reward regions, such as the nucleus accumbens. We investigated how combinations of chromatin modifications affect genes that regulate responses to cocaine. We focused on Auts2, a gene linked to human evolution and cognitive disorders, which displays strong clustering of cocaine-induced chromatin modifications in this brain region. METHODS: We combined chromosome conformation capture, circularized chromosome conformation capture, and related approaches with behavioral paradigms relevant to cocaine phenotypes. Cell type-specific functions were assessed by fluorescence-activated cell sorting and viral-mediated overexpression in Cre-dependent mouse lines. RESULTS: We observed that Auts2 gene expression is increased by repeated cocaine administration specifically in D2-type medium spiny neurons in the nucleus accumbens, an effect seen in male but not female mice. Auts2 messenger RNA expression was also upregulated postmortem in the nucleus accumbens of male human cocaine addicts. We obtained evidence that chromosomal looping, bypassing 1524 kb of linear genome, connects Auts2 to the Caln1 gene locus under baseline conditions. This looping was disrupted after repeated cocaine exposure, resulting in increased expression of both genes in D2-type medium spiny neurons. Cocaine exposure reduces binding of CCCTC-binding factor, a chromosomal scaffolding protein, and increases histone and DNA methylation at the Auts-Caln1 loop base in the nucleus accumbens. Cell type-specific overexpression of Auts2 or Caln1 in D2-type medium spiny neurons demonstrated that both genes promote cocaine reward. CONCLUSIONS: These findings suggest that cocaine-induced alterations of neuronal three-dimensional genome organization destabilize higher order chromatin at specific loci that regulate responses to the drug.


Assuntos
Cromatina/efeitos dos fármacos , Cocaína/administração & dosagem , Inibidores da Captação de Dopamina/administração & dosagem , Regulação da Expressão Gênica/efeitos dos fármacos , Proteínas Nucleares/metabolismo , Adolescente , Adulto , Idoso , Idoso de 80 Anos ou mais , Animais , Linhagem Celular Tumoral , Estudos de Coortes , Condicionamento Operante/efeitos dos fármacos , Proteínas do Citoesqueleto , Metilação de DNA/efeitos dos fármacos , Regulação da Expressão Gênica/genética , Humanos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Pessoa de Meia-Idade , Modelos Moleculares , Conformação Molecular , Neuroblastoma/patologia , Proteínas Nucleares/genética , Núcleo Accumbens/efeitos dos fármacos , Núcleo Accumbens/metabolismo , Ratos , Ratos Sprague-Dawley , Receptores de Dopamina D1/genética , Receptores de Dopamina D1/metabolismo , Receptores de Dopamina D2/genética , Receptores de Dopamina D2/metabolismo , Fatores de Transcrição , Adulto Jovem
11.
Science ; 356(6336)2017 04 28.
Artigo em Inglês | MEDLINE | ID: mdl-28450582

RESUMO

Neuropsychiatric disorders have a complex genetic architecture. Human genetic population-based studies have identified numerous heritable sequence and structural genomic variants associated with susceptibility to neuropsychiatric disease. However, these germline variants do not fully account for disease risk. During brain development, progenitor cells undergo billions of cell divisions to generate the ~80 billion neurons in the brain. The failure to accurately repair DNA damage arising during replication, transcription, and cellular metabolism amid this dramatic cellular expansion can lead to somatic mutations. Somatic mutations that alter subsets of neuronal transcriptomes and proteomes can, in turn, affect cell proliferation and survival and lead to neurodevelopmental disorders. The long life span of individual neurons and the direct relationship between neural circuits and behavior suggest that somatic mutations in small populations of neurons can significantly affect individual neurodevelopment. The Brain Somatic Mosaicism Network has been founded to study somatic mosaicism both in neurotypical human brains and in the context of complex neuropsychiatric disorders.


Assuntos
Encéfalo/anormalidades , Transtornos Mentais/genética , Mosaicismo , Doenças do Sistema Nervoso/genética , Células-Tronco Neurais/fisiologia , Neurônios/fisiologia , Encéfalo/metabolismo , Divisão Celular/genética , Dano ao DNA , Análise Mutacional de DNA/métodos , Reparo do DNA/genética , Replicação do DNA , Genoma Humano , Células Germinativas/metabolismo , Humanos , Rede Nervosa/crescimento & desenvolvimento , Rede Nervosa/metabolismo , Células-Tronco Neurais/metabolismo , Neurônios/metabolismo
12.
Annu Rev Genet ; 50: 317-327, 2016 Nov 23.
Artigo em Inglês | MEDLINE | ID: mdl-27893959

RESUMO

Monoallelic expression not due to cis-regulatory sequence polymorphism poses an intriguing problem in epigenetics because it requires the unequal treatment of two segments of DNA that are present in the same nucleus and that can indeed have absolutely identical sequences. Here, I focus on a few recent developments in the field of monoallelic expression that are of particular interest and raise interesting questions for future work. One development is regarding analyses of imprinted genes, in which recent work suggests the possibility that intriguing networks of imprinted genes exist and are important for genetic and physiological studies. Another issue that has been raised in recent years by a number of publications is the question of how skewed allelic expression should be for it to be designated as monoallelic expression and, further, what methods are appropriate or inappropriate for analyzing genomic data to examine allele-specific expression. Perhaps the most exciting recent development in mammalian monoallelic expression is a clever and carefully executed analysis of genetic diversity of autosomal genes subject to random monoallelic expression (RMAE), which provides compelling evidence for distinct evolutionary forces acting on random monoallelically expressed genes.


Assuntos
Expressão Gênica , Impressão Genômica , Mamíferos/genética , Animais , Variação Genética , Genoma , Inativação do Cromossomo X
13.
Nat Neurosci ; 19(11): 1442-1453, 2016 11.
Artigo em Inglês | MEDLINE | ID: mdl-27668389

RESUMO

Over 100 genetic loci harbor schizophrenia-associated variants, yet how these variants confer liability is uncertain. The CommonMind Consortium sequenced RNA from dorsolateral prefrontal cortex of people with schizophrenia (N = 258) and control subjects (N = 279), creating a resource of gene expression and its genetic regulation. Using this resource, ∼20% of schizophrenia loci have variants that could contribute to altered gene expression and liability. In five loci, only a single gene was involved: FURIN, TSNARE1, CNTN4, CLCN3 or SNAP91. Altering expression of FURIN, TSNARE1 or CNTN4 changed neurodevelopment in zebrafish; knockdown of FURIN in human neural progenitor cells yielded abnormal migration. Of 693 genes showing significant case-versus-control differential expression, their fold changes were ≤ 1.33, and an independent cohort yielded similar results. Gene co-expression implicates a network relevant for schizophrenia. Our findings show that schizophrenia is polygenic and highlight the utility of this resource for mechanistic interpretations of genetic liability for brain diseases.


Assuntos
Regulação da Expressão Gênica/genética , Predisposição Genética para Doença , Herança Multifatorial/genética , Esquizofrenia/genética , Encéfalo/metabolismo , Feminino , Estudo de Associação Genômica Ampla , Humanos , Masculino , Polimorfismo de Nucleotídeo Único , Risco
14.
Nat Commun ; 6: 7438, 2015 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-26074426

RESUMO

Beyond its role in host defense, bacterial DNA methylation also plays important roles in the regulation of gene expression, virulence and antibiotic resistance. Bacterial cells in a clonal population can generate epigenetic heterogeneity to increase population-level phenotypic plasticity. Single molecule, real-time (SMRT) sequencing enables the detection of N6-methyladenine and N4-methylcytosine, two major types of DNA modifications comprising the bacterial methylome. However, existing SMRT sequencing-based methods for studying bacterial methylomes rely on a population-level consensus that lacks the single-cell resolution required to observe epigenetic heterogeneity. Here, we present SMALR (single-molecule modification analysis of long reads), a novel framework for single molecule-level detection and phasing of DNA methylation. Using seven bacterial strains, we show that SMALR yields significantly improved resolution and reveals distinct types of epigenetic heterogeneity. SMALR is a powerful new tool that enables de novo detection of epigenetic heterogeneity and empowers investigation of its functions in bacterial populations.


Assuntos
Metilação de DNA , DNA Bacteriano/metabolismo , Epigênese Genética , Sequência de Bases , Campylobacter jejuni/genética , Caulobacter crescentus/genética , Chromohalobacter/genética , Metilases de Modificação do DNA/genética , Metilases de Modificação do DNA/metabolismo , Escherichia coli/genética , Genoma Bacteriano , Geobacter/genética , Helicobacter pylori/genética , Dados de Sequência Molecular , Análise de Sequência de DNA
15.
Eur J Hum Genet ; 23(10): 1308-17, 2015 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-25758992

RESUMO

Congenital cardiac and neurodevelopmental deficits have been recently linked to the mediator complex subunit 13-like protein MED13L, a subunit of the CDK8-associated mediator complex that functions in transcriptional regulation through DNA-binding transcription factors and RNA polymerase II. Heterozygous MED13L variants cause transposition of the great arteries and intellectual disability (ID). Here, we report eight patients with predominantly novel MED13L variants who lack such complex congenital heart malformations. Rather, they depict a syndromic form of ID characterized by facial dysmorphism, ID, speech impairment, motor developmental delay with muscular hypotonia and behavioral difficulties. We thereby define a novel syndrome and significantly broaden the clinical spectrum associated with MED13L variants. A prominent feature of the MED13L neurocognitive presentation is profound language impairment, often in combination with articulatory deficits.


Assuntos
Anormalidades Múltiplas/genética , Complexo Mediador/genética , Adolescente , Criança , Pré-Escolar , Feminino , Humanos , Deficiência Intelectual/genética , Masculino , Hipotonia Muscular/genética , Mutação/genética , Fenótipo , Síndrome , Transposição dos Grandes Vasos/genética
16.
Proc Natl Acad Sci U S A ; 112(22): 6848-54, 2015 Jun 02.
Artigo em Inglês | MEDLINE | ID: mdl-25422445

RESUMO

The recent descriptions of widespread random monoallelic expression (RMAE) of genes distributed throughout the autosomal genome indicate that there are more genes subject to RMAE on autosomes than the number of genes on the X chromosome where X-inactivation dictates RMAE of X-linked genes. Several of the autosomal genes that undergo RMAE have independently been implicated in human Mendelian disorders. Thus, parsing the relationship between allele-specific expression of these genes and disease is of interest. Mutations in the human forkhead box P2 gene, FOXP2, cause developmental verbal dyspraxia with profound speech and language deficits. Here, we show that the human FOXP2 gene undergoes RMAE. Studying an individual with developmental verbal dyspraxia, we identify a deletion 3 Mb away from the FOXP2 gene, which impacts FOXP2 gene expression in cis. Together these data suggest the intriguing possibility that RMAE impacts the haploinsufficiency phenotypes observed for FOXP2 mutations.


Assuntos
Apraxias/genética , Fatores de Transcrição Forkhead/metabolismo , Regulação da Expressão Gênica no Desenvolvimento/fisiologia , Genes Ligados ao Cromossomo X/genética , Fala/fisiologia , Inativação do Cromossomo X/fisiologia , Hibridização Genômica Comparativa , Feminino , Fatores de Transcrição Forkhead/genética , Perfilação da Expressão Gênica , Regulação da Expressão Gênica no Desenvolvimento/genética , Humanos , Polimorfismo de Nucleotídeo Único/genética , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Análise de Sequência de DNA , Deleção de Sequência/genética
17.
Hum Hered ; 78(2): 59-72, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25033836

RESUMO

BACKGROUND/AIMS: Phenotypic discordance in monozygotic (MZ) twin pairs can have an epigenetic or genetic basis. Although age-related macular degeneration (AMD) has a strong genetic component, few studies have addressed its epigenetic basis. METHODS: Using SNP arrays, we evaluated differences in copy number variation (CNV) and allele-specific methylation (ASM) patterns (via methyl-sensitive restriction enzyme digestion of DNA) in MZ twin pairs from the US Twin Study of AMD. Further analyses examined the relationship between ASM and CNVs with AMD by both case/control analysis of ASM at candidate regions and by analysis of ASM and CNVs in twins discordant for AMD. RESULTS: The frequency of ASM sites differs between cases and controls in regions surrounding the AMD candidate genes CFH, C2 and CFB. While ASM patterns show a substantial dependence on local sequence polymorphisms, we observed dissimilar patterns of ASM between MZ twins. The genes closest to the sites where discordant MZ twins have dissimilar patterns of ASM are enriched for genes implicated in gliosis, a process associated with neovascular AMD. Similar twin-based analyses revealed no AMD-associated CNVs. CONCLUSIONS: Our results provide evidence of epigenetic influences beyond the known genetic susceptibility and implicate inflammatory responses and gliosis in the etiology of AMD.


Assuntos
Epigenômica , Degeneração Macular/genética , Gêmeos Monozigóticos/genética , Alelos , Estudos de Casos e Controles , Variações do Número de Cópias de DNA , Metilação de DNA , Gliose/epidemiologia , Gliose/genética , Humanos , Degeneração Macular/epidemiologia , Masculino , Polimorfismo de Nucleotídeo Único , Estados Unidos/epidemiologia
18.
PLoS One ; 9(6): e98464, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24911414

RESUMO

We hypothesize that the phenomenon of allele-specific methylation (ASM) may underlie the phenotypic effects of multiple variants identified by Genome-Wide Association studies (GWAS). We evaluate ASM in a human population and document its genome-wide patterns in an initial screen at up to 380,678 sites within the genome, or up to 5% of the total genomic CpGs. We show that while substantial inter-individual variation exists, 5% of assessed sites show evidence of ASM in at least six samples; the majority of these events (81%) are under genetic influence. Many of these cis-regulated ASM variants are also eQTLs in peripheral blood mononuclear cells and monocytes and/or in high linkage-disequilibrium with variants linked to complex disease. Finally, focusing on autoimmune phenotypes, we extend this initial screen to confirm the association of cis-regulated ASM with multiple complex disease-associated variants in an independent population using next-generation bisulfite sequencing. These four variants are implicated in complex phenotypes such as ulcerative colitis and AIDS progression disease (rs10491434), Celiac disease (rs2762051), Crohn's disease, IgA nephropathy and early-onset inflammatory bowel disease (rs713875) and height (rs6569648). Our results suggest cis-regulated ASM may provide a mechanistic link between the non-coding genetic changes and phenotypic variation observed in these diseases and further suggests a route to integrating DNA methylation status with GWAS results.


Assuntos
Alelos , Metilação de DNA , Doença/genética , Variação Genética , Estudo de Associação Genômica Ampla , Regulação da Expressão Gênica , Genômica , Humanos , Análise de Sequência com Séries de Oligonucleotídeos , Fenótipo
19.
Dev Cell ; 26(2): 120-1, 2013 Jul 29.
Artigo em Inglês | MEDLINE | ID: mdl-23906063

RESUMO

Reporting recently in Cell, Lyons et al. (2013) reveal key roles for transient LSD1 histone demethylase activity in activation of a single olfactory receptor allele and suppression of the rest of the olfactory receptor gene family, thereby locking in the expression of a single olfactory receptor per sensory neuron.


Assuntos
Adenilil Ciclases/metabolismo , Epigênese Genética , Regulação da Expressão Gênica , Oxirredutases N-Desmetilantes/metabolismo , Receptores Odorantes/genética , Células Receptoras Sensoriais/metabolismo , Animais
20.
Neuropsychopharmacology ; 38(1): 55-61, 2013 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-22763620

RESUMO

Monoallelic expression poses an intriguing problem in epigenetics because it requires the unequal treatment of two segments of DNA that are present in the same nucleus and which can have absolutely identical sequences. This review will consider different known types of monoallelic expression. For all monoallelically expressed genes, their respective allele-specific patterns of expression have the potential to affect brain function and dysfunction.


Assuntos
Alelos , Epigênese Genética/genética , Regulação da Expressão Gênica/genética , Animais , Química Encefálica/genética , Química Encefálica/fisiologia , Epigênese Genética/fisiologia , Humanos , Distribuição Aleatória
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...