RESUMO
This research consolidates our group's advances in developing a therapeutic dressing with innovative enzymatic debridement, focusing on the physicochemical and in vitro biological properties of papain immobilized in wet oxidized bacterial cellulose (OxBC-Papain) dressing. OxBC membranes were produced with Komagataeibacter hansenii oxidized with NaIO4, and papain was immobilized on them. They were characterized in terms of enzyme stability (over 100 days), absorption capacity, water vapor transmission (WVT), hemocompatibility, cytotoxicity, and cell adhesion. The OxBC-Papain membrane showed 68.5% proteolytic activity after 100 days, demonstrating the benefit of using the OxBC wet membrane for papain stability. It had a WVT rate of 678 g/m2·24 h and cell viability of 99% and 86% for L929 and HaCat cells, respectively. The membranes exhibited non-hemolytic behavior and maintained 26% clotting capacity after 1 h. The wet OxBC-Papain membrane shows significant potential as a natural biomolecule-based therapeutic dressing for wound care, offering efficient debridement, moisture maintenance, exudate absorption, gas exchange, and hemostasis without cytotoxic effects or cell adhesion to the dressing. Further research, especially using in vivo models, is needed to assess its efficacy in inducing epithelialization. This study advances stomatherapy knowledge, providing a cost-effective solution for enzymatic debridement in healthcare.
RESUMO
This study used the roto-evaporation technique to engineer a 6 mm three-layer polyurethane vascular graft (TVG) that mimics the architecture of human coronary artery native vessels. Two segmented polyurethanes were synthesized using lysine (SPUUK) and ascorbic acid (SPUAA), and the resulting materials were used to create the intima and adventitia layers, respectively. In contrast, the media layer of the TVG was composed of a commercially available polyurethane, Pearlbond 703 EXP. For comparison purposes, single-layer vascular grafts (SVGs) from individual polyurethanes and a polyurethane blend (MVG) were made and tested similarly and evaluated according to the ISO 7198 standard. The TVG exhibited the highest circumferential tensile strength and longitudinal forces compared to single-layer vascular grafts of lower thicknesses made from the same polyurethanes. The TVG also showed higher suture and burst strength values than native vessels. The TVG withstood up to 2087 ± 139 mmHg and exhibited a compliance of 0.15 ± 0.1%/100 mmHg, while SPUUK SVGs showed a compliance of 5.21 ± 1.29%/100 mmHg, akin to coronary arteries but superior to the saphenous vein. An indirect cytocompatibility test using the MDA-MB-231 cell line showed 90 to 100% viability for all polyurethanes, surpassing the minimum 70% threshold needed for biomaterials deemed cytocompatibility. Despite the non-cytotoxic nature of the polyurethane extracts when grown directly on the surface, they displayed poor fibroblast adhesion, except for SPUUK. All vascular grafts showed hemolysis values under the permissible limit of 5% and longer coagulation times.
RESUMO
Fibropapillomatosis (FP) threatens the survival of green turtle (Chelonia mydas) populations at a global scale, and human activities are regularly pointed as causes of high FP prevalence. However, the association of ecological factors with the disease's severity in complex coastal systems has not been well established and requires further studies. Based on a set of 405 individuals caught over ten years, this preliminary study provides the first insight of FP in Martinique Island, which is a critical development area for immature green turtles. Our main results are: (i) 12.8% of the individuals were affected by FP, (ii) FP has different prevalence and temporal evolution between very close sites, (iii) green turtles are more frequently affected on the upper body part such as eyes (41.4%), fore flippers (21.9%), and the neck (9.4%), and (iv) high densities of individuals are observed on restricted areas. We hypothesise that turtle's aggregation enhances horizontal transmission of the disease. FP could represent a risk for immature green turtles' survival in the French West Indies, a critical development area, which replenishes the entire Atlantic population. Continuing scientific monitoring is required to identify which factors are implicated in this panzootic disease and ensure the conservation of the green turtle at an international scale.
Assuntos
Tartarugas , Animais , Martinica/epidemiologia , PrevalênciaRESUMO
Natural polymer-based films, due to their favorable biological and mechanical properties, have demonstrated great potential as coatings for biomedical applications. Among them, chitosan films have been widely studied both as coating materials and as controlled drug release systems. Crosslinkers are often used to tune chitosan's crosslinking degree and thus to control the drug release kinetics. For this purpose, quercetin, a plant-derived natural polyphenol, has gained attention as a crosslinker, mainly for its intrinsic anti-inflammatory, antioxidant, and antibacterial features. In this study, chitosan films crosslinked with three different concentrations of quercetin (10, 20, and 30% w/w) have been used as controlled release systems for the delivery of the antibacterial drug trimethoprim (TMP, 10% w/w). Physicochemical and antimicrobial properties were investigated. Surface wettability and composition of the films were assessed by contact angle measurements, X-ray photoelectron spectroscopy (XPS), and Fourier-transform infrared spectroscopy (FTIR), respectively. The release kinetic of TMP in phosphate-buffered saline (PBS) and 2-(N-morpholino) ethanesulfonic acid (MES) was studied over time. Finally, antibacterial properties were assessed on E. coli and S. aureus through Kirby-Bauer disc diffusion and micro-dilution broth assays. Results show that quercetin, at the tested concentrations, clearly increases the crosslinking degree in a dose-dependent manner, thus influencing the release kinetic of the loaded TMP while maintaining its bactericidal effects. In conclusion, this work demonstrates that quercetin-crosslinked chitosan films represent a promising strategy for the design of antibiotic-releasing coatings for biomedical applications.
RESUMO
Many strategies have been reported to improve compatibility of biopolymers using chemical and physical modifications. One possibility is the introduction of sulfonate groups (R-SO3(-)) in the chitosan chain. Another biopolymer with similar characteristics to those of heparin is κ-carrageenan. This study proposed to investigate the application of these two polymers, based on their potential for globular protein adsorption (BSA and fibrinogen). Polymeric films of chitosan and κ-carrageenan were prepared; all films were characterized by elemental analyses, FTIR, XPS and SEM. Characterization techniques showed that the chitosan chain was modified and confirmed the existence of sulfonate groups, as well as in the κ-carrageenan chain, indicating surfaces with similar chemical properties to those of heparin. The effect of charge density was observed for each adsorption condition (BSA at pH 5.0 and 7.4). A more pronounced adsorption rate was observed at pH 5.0 than at pH 7.4 and equilibrium adsorption was achieved, in both cases, after approximately 20 min. The equilibrium data indicate a lower adsorption rate for the sulfonated chitosan film, in comparison to the other films. These results confirm the potential of modified chitosan for use in applications in which globular protein adsorption should be avoided.
Assuntos
Carragenina/química , Quitosana/química , Fibrinogênio/metabolismo , Soroalbumina Bovina/metabolismo , Ácidos Sulfônicos/química , Adsorção , Animais , Bovinos , Concentração de Íons de Hidrogênio , Microscopia de Força Atômica , Microscopia Eletrônica de Varredura , Espectroscopia de Infravermelho com Transformada de FourierRESUMO
PECs of chitosan/κ-carrageenan are prepared in three different volumetric rations. The complex formation is characterized in order to evaluate the blending formation. Blood compatibility is evaluated by protein adsorption (BSA and fibrinogen) and PEC toxicities are determined with fibroblast cell viability and proliferation. The swelling degree of PECs decreases when the amount of chitosan increases. Due to the linked film formation, PECs decrease BSA adsorption and increase fibrinogen adsorption when compared to the pristine chitosan and κ-carrageenan films. Although pristine chitosan and κ-carrageenan films produced similar cell expansion and viability, the PEC 50:50 vol% chitosan/κ-carrageenan PEC may be acceptable as a new scaffold for cell therapies, due to their effect on cell survival.