Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Biol Lett ; 17(2): 20200824, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-33563133

RESUMO

The early Eocene of the southern Bighorn Basin, Wyoming, is notable for its nearly continuous record of mammalian fossils. Microsyopinae (?Primates) is one of several lineages that shows evidence of evolutionary change associated with an interval referred to as Biohorizon A. Arctodontomys wilsoni is replaced by a larger species, Arctodontomys nuptus, during the biohorizon interval in what is likely an immigration/emigration or immigration/local extinction event. The latter is then superseded by Microsyops angustidens after the end of the Biohorizon A interval. Although this pattern has been understood for some time, denser sampling has led to the identification of a specimen intermediate in morphology between A. nuptus and M. angustidens, located stratigraphically as the latter is appearing. Because specimens of A. nuptus have been recovered approximately 60 m above the appearance of M. angustidens, it is clear that A. nuptus did not suffer pseudoextinction. Instead, evidence suggests that M. angustidens branched off from a population of A. nuptus, but the latter species persisted. This represents possible evidence of cladogenesis, which has rarely been directly documented in the fossil record. The improved understanding of both evolutionary transitions with better sampling highlights the problem of interpreting gaps in the fossil record as punctuations.


Assuntos
Fósseis , Especiação Genética , Animais , Evolução Biológica , Primatas , Wyoming
2.
Proc Biol Sci ; 282(1812): 20151097, 2015 Aug 07.
Artigo em Inglês | MEDLINE | ID: mdl-26224712

RESUMO

Species selection, covariation of species' traits with their net diversification rates, is an important component of macroevolution. Most studies have relied on indirect evidence for its operation and have not quantified its strength relative to other macroevolutionary forces. We use an extension of the Price equation to quantify the mechanisms of body size macroevolution in mammals from the latest Palaeocene and earliest Eocene of the Bighorn and Clarks Fork Basins of Wyoming. Dwarfing of mammalian taxa across the Palaeocene/Eocene Thermal Maximum (PETM), an intense, brief warming event that occurred at approximately 56 Ma, has been suggested to reflect anagenetic change and the immigration of small bodied-mammals, but might also be attributable to species selection. Using previously reconstructed ancestor-descendant relationships, we partitioned change in mean mammalian body size into three distinct mechanisms: species selection operating on resident mammals, anagenetic change within resident mammalian lineages and change due to immigrants. The remarkable decrease in mean body size across the warming event occurred through anagenetic change and immigration. Species selection also was strong across the PETM but, intriguingly, favoured larger-bodied species, implying some unknown mechanism(s) by which warming events affect macroevolution.


Assuntos
Evolução Biológica , Tamanho Corporal , Fósseis/anatomia & histologia , Mamíferos/anatomia & histologia , Modelos Biológicos , Animais , Mudança Climática , Mamíferos/fisiologia , Temperatura , Wyoming
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA