Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
bioRxiv ; 2024 Apr 29.
Artigo em Inglês | MEDLINE | ID: mdl-38746304

RESUMO

Heritable gene silencing has been proposed to rely on DNA methylation, histone modifications, and/or non-coding RNAs in different organisms. Here we demonstrate that multiple RNA-mediated mechanisms with distinct and easily detectable molecular signatures can underlie heritable silencing of the same open-reading frame in the nematode C. elegans. Using two-gene operons, we reveal three cases of gene-selective silencing that provide support for the transmission of heritable epigenetic changes through different mechanisms of RNA silencing independent of changes in chromatin that would affect all genes of an operon equally. Different heritable epigenetic states of a gene were associated with distinct populations of stabilized mRNA fragments with untemplated poly-UG (pUG) tails, which are known intermediates of RNA silencing. These 'pUG signatures' provide a way to distinguish the multiple mechanisms that can drive heritable RNA silencing of a single gene.

2.
Trends Genet ; 38(2): 116-119, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-34493403

RESUMO

Organisms rely on stereotyped patterns of gene expression for similar form and function in every generation. The analysis of epigenetic changes in the expression of different genes across generations can provide the rationale for measured actions in one generation that consider impact on future generations.


Assuntos
Proteínas de Caenorhabditis elegans , Caenorhabditis elegans , Animais , Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/genética , Epigênese Genética , Padrões de Herança
3.
Nat Commun ; 12(1): 4239, 2021 07 09.
Artigo em Inglês | MEDLINE | ID: mdl-34244495

RESUMO

Stable epigenetic changes appear uncommon, suggesting that changes typically dissipate or are repaired. Changes that stably alter gene expression across generations presumably require particular conditions that are currently unknown. Here we report that a minimal combination of cis-regulatory sequences can support permanent RNA silencing of a single-copy transgene and its derivatives in C. elegans simply upon mating. Mating disrupts competing RNA-based mechanisms to initiate silencing that can last for >300 generations. This stable silencing requires components of the small RNA pathway and can silence homologous sequences in trans. While animals do not recover from mating-induced silencing, they often recover from and become resistant to trans silencing. Recovery is also observed in most cases when double-stranded RNA is used to silence the same coding sequence in different regulatory contexts that drive germline expression. Therefore, we propose that regulatory features can evolve to oppose permanent and potentially maladaptive responses to transient change.


Assuntos
Proteínas de Caenorhabditis elegans/genética , Caenorhabditis elegans/genética , Interferência de RNA/fisiologia , RNA de Cadeia Dupla/genética , Animais , Animais Geneticamente Modificados , Feminino , Masculino , Elementos Reguladores de Transcrição , Reprodução/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...