Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Emerg Infect Dis ; 30(3): 519-529, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38407230

RESUMO

Infectious disease outbreaks are associated with substantial stigma, which can have negative effects on affected persons and communities and on outbreak control. Thus, measuring stigma in a standardized and validated manner early in an outbreak is critical to disease control. We reviewed existing scales used to assess stigma during outbreaks. Our findings show that many different scales have been developed, but few have been used more than once, have been adequately validated, or have been tested in different disease and geographic contexts. We found that scales were usually developed too slowly to be informative early during an outbreak and were published a median of 2 years after the first case of an outbreak. A rigorously developed, transferable stigma scale is needed to assess and direct responses to stigma during infectious disease outbreaks.


Assuntos
Doenças Transmissíveis , Humanos , Doenças Transmissíveis/diagnóstico , Doenças Transmissíveis/epidemiologia , Surtos de Doenças , Estigma Social
2.
Lancet Infect Dis ; 24(7): e463-e471, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38185127

RESUMO

The year 2023 marked the 25th anniversary of the first detected outbreak of Nipah virus disease. Despite Nipah virus being a priority pathogen in the WHO Research and Development blueprint, the disease it causes still carries high mortality, unchanged since the first reported outbreaks. Although candidate vaccines for Nipah virus disease exist, developing new therapeutics has been underinvested. Nipah virus disease illustrates the typical market failure of medicine development for a high-consequence pathogen. The unpredictability of outbreaks and low number of infections affecting populations in low-income countries does not make an attractive business case for developing treatments for Nipah virus disease-a situation compounded by methodological challenges in clinical trial design. Nipah virus therapeutics development is not motivated by commercial interest. Therefore, we propose a regionally led, patient-centred, and public health-centred, end-to-end framework that articulates a public health vision and a roadmap for research, development, manufacturing, and access towards the goal of improving patient outcomes. This framework includes co-creating a regulatory-compliant, clinically meaningful, and context-specific clinical development plan and establishing quality standards in clinical care and research capabilities at sites where the disease occurs. The success of this approach will be measured by the availability and accessibility of improved Nipah virus treatments in affected communities and reduced mortality.


Assuntos
Infecções por Henipavirus , Vírus Nipah , Humanos , Infecções por Henipavirus/prevenção & controle , Infecções por Henipavirus/epidemiologia , Infecções por Henipavirus/terapia , Assistência ao Paciente/métodos , Assistência ao Paciente/normas , Surtos de Doenças/prevenção & controle , Saúde Pública
4.
Sci Rep ; 12(1): 17684, 2022 10 21.
Artigo em Inglês | MEDLINE | ID: mdl-36271270

RESUMO

In vitro whole blood infection models are used for elucidating the immune response to Mycobacterium tuberculosis (Mtb). They exhibit commonalities but also differences, to the in vivo blood transcriptional response during natural human Mtb disease. Here, we present a description of concordant and discordant components of the immune response in blood, quantified through transcriptional profiling in an in vitro whole blood infection model compared to whole blood from patients with tuberculosis disease. We identified concordantly and discordantly expressed gene modules and performed in silico cell deconvolution. A high degree of concordance of gene expression between both adult and paediatric in vivo-in vitro tuberculosis infection was identified. Concordance in paediatric in vivo vs in vitro comparison is largely characterised by immune suppression, while in adults the comparison is marked by concordant immune activation, particularly that of inflammation, chemokine, and interferon signalling. Discordance between in vitro and in vivo increases over time and is driven by T-cell regulation and monocyte-related gene expression, likely due to apoptotic depletion of monocytes and increasing relative fraction of longer-lived cell types, such as T and B cells. Our approach facilitates a more informed use of the whole blood in vitro model, while also accounting for its limitations.


Assuntos
Mycobacterium tuberculosis , Tuberculose , Adulto , Humanos , Criança , Transcriptoma , RNA , Tuberculose/microbiologia , Mycobacterium tuberculosis/genética , Interferons/genética
5.
J Biol Chem ; 298(8): 102151, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35718063

RESUMO

cAMP and antimicrobial susceptibility in mycobacteriaAntimicrobial tolerance, the ability to survive exposure to antimicrobials via transient nonspecific means, promotes the development of antimicrobial resistance (AMR). The study of the molecular mechanisms that result in antimicrobial tolerance is therefore essential for the understanding of AMR. In gram-negative bacteria, the second messenger molecule 3'',5''-cAMP has been previously shown to be involved in AMR. In mycobacteria, however, the role of cAMP in antimicrobial tolerance has been difficult to probe due to its particular complexity. In order to address this difficulty, here, through unbiased biochemical approaches consisting in the fractionation of clear protein lysate from a mycobacterial strain deleted for the known cAMP phosphodiesterase (Rv0805c) combined with mass spectrometry techniques, we identified a novel cyclic nucleotide-degrading phosphodiesterase enzyme (Rv1339) and developed a system to significantly decrease intracellular cAMP levels through plasmid expression of Rv1339 using the constitutive expression system, pVV16. In Mycobacterium smegmatis mc2155, we demonstrate that recombinant expression of Rv1339 reduced cAMP levels threefold and resulted in altered gene expression, impaired bioenergetics, and a disruption in peptidoglycan biosynthesis leading to decreased tolerance to antimicrobials that target cell wall synthesis such as ethambutol, D-cycloserine, and vancomycin. This work increases our understanding of the role of cAMP in mycobacterial antimicrobial tolerance, and our observations suggest that nucleotide signaling may represent a new target for the development of antimicrobial therapies.


Assuntos
Anti-Infecciosos , Farmacorresistência Bacteriana , Mycobacterium smegmatis , Diester Fosfórico Hidrolases , Anti-Infecciosos/farmacologia , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Parede Celular/efeitos dos fármacos , AMP Cíclico , Mycobacterium smegmatis/enzimologia , Mycobacterium smegmatis/genética , Diester Fosfórico Hidrolases/genética , Diester Fosfórico Hidrolases/metabolismo
6.
Mol Omics ; 17(3): 376-393, 2021 06 14.
Artigo em Inglês | MEDLINE | ID: mdl-34125125

RESUMO

Metabolomics has emerged as an invaluable tool that can be used along with genomics, transcriptomics and proteomics to understand host-pathogen interactions at small-molecule levels. Metabolomics has been used to study a variety of infectious diseases and applications. The most common application of metabolomics is for prognostic and diagnostic purposes, specifically the screening of disease-specific biomarkers by either NMR-based or mass spectrometry-based metabolomics. In addition, metabolomics is of great significance for the discovery of druggable metabolic enzymes and/or metabolic regulators through the use of state-of-the-art flux analysis, for example, via the elucidation of metabolic mechanisms. This review discusses the application of metabolomics technologies to biomarker screening, the discovery of drug targets in infectious diseases such as viral, bacterial and parasite infections and immunometabolomics, highlights the challenges associated with accessing metabolite compartmentalization and discusses the available tools for determining local metabolite concentrations.


Assuntos
Biomarcadores/metabolismo , Doenças Transmissíveis/metabolismo , Metabolômica/métodos , Doenças Transmissíveis/tratamento farmacológico , Descoberta de Drogas , Humanos , Redes e Vias Metabólicas/efeitos dos fármacos , Bibliotecas de Moléculas Pequenas/farmacologia , Bibliotecas de Moléculas Pequenas/uso terapêutico
7.
Immunol Cell Biol ; 96(10): 1049-1059, 2018 11.
Artigo em Inglês | MEDLINE | ID: mdl-29758102

RESUMO

Inflammatory bowel disease (IBD) is a condition of chronic inflammatory intestinal disorder with increasing prevalence but limited effective therapies. The purine metabolic pathway is involved in various inflammatory processes including IBD. However, the mechanisms through which purine metabolism modulates IBD remain to be established. Here, we found that mucosal expression of genes involved in the purine metabolic pathway is altered in patients with active ulcerative colitis (UC), which is associated with elevated gene expression signatures of the group 3 innate lymphoid cell (ILC3)-interleukin (IL)-22 pathway. In mice, blockade of ectonucleotidases (NTPDases), critical enzymes for purine metabolism by hydrolysis of extracellular adenosine 5'-triphosphate (eATP) into adenosine, exacerbates dextran-sulfate sodium-induced intestinal injury. This exacerbation of colitis is associated with reduction of colonic IL-22-producing ILC3s, which afford essential protection against intestinal inflammation, and is rescued by exogenous IL-22. Mechanistically, activation of ILC3s for IL-22 production is reciprocally mediated by eATP and adenosine. These findings reveal that the NTPDase-mediated balance between eATP and adenosine regulates ILC3 cell function to provide protection against intestinal injury and suggest potential therapeutic strategies for treating IBD by targeting the purine-ILC3 axis.


Assuntos
Colite/etiologia , Colite/metabolismo , Imunidade Inata , Linfócitos/imunologia , Linfócitos/metabolismo , Purinas/metabolismo , Animais , Biomarcadores , Colite/patologia , Sulfato de Dextrana/efeitos adversos , Modelos Animais de Doenças , Citometria de Fluxo , Perfilação da Expressão Gênica , Mucosa Intestinal/imunologia , Mucosa Intestinal/metabolismo , Mucosa Intestinal/patologia , Camundongos , Camundongos Knockout , Transcriptoma
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...