Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
ACS Omega ; 8(30): 27534-27542, 2023 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-37546596

RESUMO

Using atomic force microscopy, we probed the growth of pentacene molecules on graphene that was fabricated by chemical vapor deposition and transferred onto 300 nm-thick SiO2 substrates. The topography of such graphene has two important properties. First, its surface is comprised of folds that have different orientations, and second, it has several multilayer-graphene regions distributed over the monolayer-graphene surface. On such folded graphene features, we vacuum evaporated pentacene and observed three-dimensional islands with an average height of ∼15 nm. They are oriented either parallel or perpendicular to the folds, and they are also predominantly oriented along the symmetry axes of graphene. Orientation of pentacene islands on graphene evaporated at room temperature has a wide distribution. On the contrary, most of the pentacene islands evaporated at 60 °C are oriented at 30° with respect to the fold direction. We observed that the folds act as a potential barrier for the surface transport of pentacene molecules. In addition, we interpret the 3D growth of pentacene islands on graphene in terms of reduced polar components of the surface energy on graphene investigated with contact angle measurements.

2.
Sci Rep ; 7(1): 669, 2017 04 06.
Artigo em Inglês | MEDLINE | ID: mdl-28386115

RESUMO

Since its inception, scanning probe microscopy (SPM) has established itself as the tool of choice for probing surfaces and functionalities at the nanoscale. Although recent developments in the instrumentation have greatly improved the metrological aspects of SPM, it is still plagued by the drifts and nonlinearities of the piezoelectric actuators underlying the precise nanoscale motion. In this work, we present an innovative computer-vision-based distortion correction algorithm for offline processing of functional SPM measurements, allowing two images to be directly overlaid with minimal error - thus correlating position with time evolution and local functionality. To demonstrate its versatility, the algorithm is applied to two very different systems. First, we show the tracking of polarisation switching in an epitaxial Pb(Zr0.2Ti0.8)O3 thin film during high-speed continuous scanning under applied tip bias. Thanks to the precise time-location-polarisation correlation we can extract the regions of domain nucleation and track the motion of domain walls until the merging of the latter in avalanche-like events. Secondly, the morphology of surface folds and wrinkles in graphene deposited on a PET substrate is probed as a function of applied strain, allowing the relaxation of individual wrinkles to be tracked.

3.
Langmuir ; 30(39): 11681-8, 2014 Oct 07.
Artigo em Inglês | MEDLINE | ID: mdl-25216076

RESUMO

Atomic force microscopy has been used to examine early stages of pentacene growth on exfoliated single-layer graphene transferred to SiO2 substrates. We have observed 2D growth with mean height of 1.5 ± 0.2 nm on as-transferred graphene. Three-dimensional islands of pentacene with an average height of 11 ± 2 nm were observed on graphene that was annealed at 350 °C prior to pentacene growth. Compellingly similar 3D morphology has been observed on graphene transferred onto SiO2 that was treated with hexamethyldisilazane prior to the transfer of graphene. On multilayer graphene we have observed 2D growth, regardless of the treatment of SiO2. We interpret this behavior of pentacene molecules in terms of the influence of the dipolar field that emerges from the water monolayer at the graphene/SiO2 interface on the surface energy of graphene.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...