Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Biochem Biophys Res Commun ; 487(1): 122-127, 2017 05 20.
Artigo em Inglês | MEDLINE | ID: mdl-28408212

RESUMO

The aim of this study was to evaluate the inhibiting effect of apigenin on liver cancer in vivo based on the optical molecular imaging method. Subcutaneous liver tumor models were established using respective 1 × 106 firefly luciferase (fLuc) and green fluorescent protein (GFP) labeled human hepatocellular carcinoma cells (HepG2-fLuc and HepG2-GFP cells) in 20 BALB/c nude mice which were randomly divided into two groups, 10 in each group. After the tumor cells were implanted 15 days, apigenin was administered through intraperitoneal injection in group B, the other ten mice as control group A. Bioluminescence imaging (BLI) and fluorescence molecular imaging (FMI) were carried out for the follow-up of subcutaneous tumor model. As time goes on, intensity and distribution of bioluminescence and fluorescence of tumours increased gradually with the growth of tumours little by little. The whole process of observation was in accordance with known activities of HCC in the human liver. The tumor volume and tumor weight were significant lower in group B than in group A (p < 0.05), Subcutaneous tumours in the apigenin treatment group B based on BLI and FMI were significantly inhibited compared to the control group A (p < 0.05). Apigenin could be expected as a new drug to treat hepatocellular carcinoma. Optical molecular imaging technology enabled the non-invasive and reliable assessment of anti-tumor drug efficacy on liver cancer.


Assuntos
Apigenina/administração & dosagem , Carcinoma Hepatocelular/tratamento farmacológico , Carcinoma Hepatocelular/patologia , Neoplasias Hepáticas/tratamento farmacológico , Neoplasias Hepáticas/patologia , Imagem Molecular/métodos , Animais , Antineoplásicos/administração & dosagem , Linhagem Celular Tumoral , Relação Dose-Resposta a Droga , Ensaios de Seleção de Medicamentos Antitumorais/métodos , Humanos , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Nus , Microscopia de Fluorescência/métodos , Reprodutibilidade dos Testes , Sensibilidade e Especificidade , Resultado do Tratamento
2.
Anal Chem ; 88(7): 4114-21, 2016 Apr 05.
Artigo em Inglês | MEDLINE | ID: mdl-26942557

RESUMO

Reliable long-term in vivo tracking of stem cells is of great importance in stem cell-based therapy and research. Fluorescence imaging with in situ excitation has significant autofluorescence background, which results in poor signal-to-noise ratio (SNR). Here we report TAT penetrating peptide-bioconjugated long persistent luminescence nanoparticles (LPLNP-TAT) for long-term tracking of adipose-derived stem cells (ASC) without constant external excitation. LPLNP-TAT exhibits near-infrared emitting, red light renewable capability, and superior in vivo imaging depth and SNR compared with conventional organic dye and quantum dots. Our findings show that LPLNP-TAT can successfully label ASC without impairing their proliferation and differentiation and can effectively track ASC in skin-regeneration and tumor-homing models. We believe that LPLNP-TAT represents a new generation of cell tracking probes and will have broad application in diagnosis and therapy.


Assuntos
Tecido Adiposo/citologia , Rastreamento de Células/métodos , Luminescência , Células-Tronco Mesenquimais/citologia , Nanopartículas/química , Razão Sinal-Ruído , Animais , Diferenciação Celular , Proliferação de Células , Células Cultivadas , Raios Infravermelhos , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...