Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Front Microbiol ; 15: 1353849, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38550871

RESUMO

Introduction: Carbapenem-resistant hypervirulent Klebsiella pneumoniae (CR-HvKP) strains combining virulence and multidrug resistance (MDR) features pose a great public health concern. The aim of this study is to explore the evolutionary characteristics of virulence in CR-HvKP by investigating the genetic features of resistance and virulence hybrid plasmids. Methods: The resistance and virulence phenotypes were determined by using antimicrobial susceptibility testing and the mouse bacteremia infection model, respectively. Plasmid profiles were investigated by S1 nuclease pulsed-field gel electrophoresis (S1-PFGE) and Southern blotting, conjugation assay, and whole genome sequencing (WGS). Bioinformatics tools were used to uncover the genetic features of the resistance and virulence hybrid plasmids. Results: Two ST11-KL64 CRKP clinical isolates (KP18-3-8 and KP18-2079), which exhibited enhanced virulence compared with the classic CRKP, were detected positive for blaKPC-2 and rmpA2. The virulence level of the hypermucoviscous strain KP18-3-8 was higher than that of KP18-2079. S1-PFGE, Southern hybridization and WGS analysis identified two novel hybrid virulence plasmids in KP18-3-8 (pKP1838-KPC-vir, 228,158 bp) and KP18-2079 (pKP1838-KPC-vir, 182,326 bp), respectively. The IncHI1B/repB-type plasmid pKP1838-KPC-vir co-harboring blaKPC-2 and virulence genes (rmpA2, iucABCD and iutA) but lacking type IV secretion system could transfer into non-hypervirulent ST11 K. pneumoniae with the assistance of a helper plasmid in conjugation. The IncFII/IncR-type virulence plasmid pKP18-2079-vir may have been generated as a result of recombination between a typical pLVPK-like virulence plasmid and an MDR plasmid. Conclusion: Our studies further highlight co-evolution of the virulence and resistance plasmids in ST11-CRKP isolates. Close surveillance of such hybrid virulence plasmids in clinical K. pneumoniae should be performed.

2.
J Glob Antimicrob Resist ; 34: 229-233, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37536658

RESUMO

OBJECTIVES: Emergence of carbapenemase and tigecycline resistance genes in pathogens threatens the efficacy of last-resort antibiotics. High attention should be paid to the spread and convergence of such resistance genes. This study reports an extensively drug-resistant (XDR) Providencia rettgeri clinical strain co-harbouring carbapenemase genes blaNDM-1, blaOXA-10 and the tmexCD3-toprJ1b gene cluster. METHODS: The phenotype and genotype of P. rettgeri Pre20-95 were investigated by antimicrobial susceptibility testing, conjugation assay, stability testing and whole genome sequencing. Bioinformatics tools were used to uncover the genetic structures of its multidrug-resistant (MDR) plasmid pPre20-95-1 and SXT/R391 integrative and conjugative element ICEPreChn20-95. RESULTS: P. rettgeri strain Pre20-95 was isolated from a human clinical infection and displayed an extensively drug-resistant (XDR) phenotype. Whole genome sequencing (WGS) analysis identified a pPrY2001-like MDR plasmid, namely pPre20-95-1, co-harbouring blaNDM-1 and blaOXA-10 genes in Pre20-95. The multidrug resistance region of pPre20-95-1 was composed of a Tn6625-derived module and a ∆Tn1696 structure, and blaNDM-1 and blaOXA-10 were located in a composite Tn structure consisting of insertion sequences ISCR1 and ISAba125 and an In125-like class 1 integron, respectively. Furthermore, the novel RND efflux pump gene cluster tmexCD3-toprJ1b was identified on the SXT/R391 ICE ICEPreChn20-95 of its chromosome, and reverse PCR showed that it could form a circular intermediate for transmission. CONCLUSION: Our findings highlight further dissemination of the tmexCD3-toprJ1b gene cluster into a clinical isolate of P. rettgeri and convergence with multiple carbapenemase genes, which increases the risk of the emergence of XDR strains and threatens the treatment of Enterobacterales bacterial infections.


Assuntos
Infecções por Enterobacteriaceae , Humanos , Infecções por Enterobacteriaceae/microbiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...