Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Brain Struct Funct ; 229(2): 459-475, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38197958

RESUMO

Numerosity perception is a fundamental and innate cognitive function shared by both humans and many animal species. Previous research has primarily focused on exploring the spatial and functional consistency of neural activations that were associated with the processing of numerosity information. However, the inter-individual variability of brain activations of numerosity perception remains unclear. In the present study, with a large-sample functional magnetic resonance imaging (fMRI) dataset (n = 460), we aimed to localize the functional regions related to numerosity perceptions and explore the inter-individual, hemispheric, and sex differences within these brain regions. Fifteen subject-specific activated regions, including the anterior intraparietal sulcus (aIPS), posterior intraparietal sulcus (pIPS), insula, inferior frontal gyrus (IFG), inferior temporal gyrus (ITG), premotor area (PM), middle occipital gyrus (MOG) and anterior cingulate cortex (ACC), were delineated in each individual and then used to create a functional probabilistic atlas to quantify individual variability in brain activations of numerosity processing. Though the activation percentages of most regions were higher than 60%, the intersections of most regions across individuals were considerably lower, falling below 50%, indicating substantial variations in brain activations related to numerosity processing among individuals. Furthermore, significant hemispheric and sex differences in activation location, extent, and magnitude were also found in these regions. Most activated regions in the right hemisphere had larger activation volumes and activation magnitudes, and were located more lateral and anterior than their counterparts in the left hemisphere. In addition, in most of these regions, males displayed stronger activations than females. Our findings demonstrate large inter-individual, hemispheric, and sex differences in brain activations related to numerosity processing, and our probabilistic atlas can serve as a robust functional and spatial reference for mapping the numerosity-related neural networks.


Assuntos
Encéfalo , Giro do Cíngulo , Humanos , Masculino , Feminino , Encéfalo/fisiologia , Giro do Cíngulo/fisiologia , Lobo Parietal/fisiologia , Cognição , Mapeamento Encefálico/métodos , Imageamento por Ressonância Magnética
2.
Front Public Health ; 10: 943026, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36033742

RESUMO

Objective: To investigate the association between the structural deformity and foot pain in hallux valgus (HV) patients using a multi-variate pattern analysis (MVPA) approach. Methods: Plain radiographic metrics were calculated from 36 painful and 36 pain-free HV feet. In analysis 1, univariate analyses were performed to investigate the clinical and radiographic differences between painful and pain-free HV. In analysis 2, we investigated the pattern differences for radiographic metrics between these two groups using a MVPA approach utilizing a support vector machine. In analysis 3, sequential backward selection and exhaustive search were performed as a feature-selection procedure to identify an optimal feature subtype. In analysis 4, hierarchical clustering analysis was used to identify the optimal radiographic HV subtype associated with pain in HV. Results: We found that: (1) relative to feet with pain-free HV, the painful ones exhibited a higher hallux valgus angle, i.e., the magnitude of distal metatarsal and phalangeal deviation; (2) painful HV could be accurately differentiated from pain-free HV via MVPA. Using sequential backward selection and exhaustive search, a 5-feature subset was identified with optimal performance for classifying HV as either painful or pain-free; and (3) by applying hierarchical clustering analysis, a radiographic subtype with an 80% pain incidence was identified. Conclusion: The pain in HV is multifactorial and associated with a radiographic pattern measured by various angles on plain radiographs. The combination of hallux valgus angle, inter-phalangeal angle, distal metatarsal articular angle, metatarsal cuneiform angle and metatarsal protrusion distance showed the optimal classification performance between painful and pain-free HV.


Assuntos
Hallux Valgus , Ossos do Metatarso , Humanos , Aprendizado de Máquina , Radiografia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...