Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Int Immunopharmacol ; 114: 109520, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36513022

RESUMO

BACKGROUND: Premature ovarian insufficiency is common in clinically infertile patients. The NOD-like receptor family pyrin domain-containing 3 (NLRP3)/Gasdermin D (GSDMD) signaling pathway plays a key role in premature ovarian insufficiency. Leonurine (Leo) is one of the important active ingredients extracted from Leonurus japonicus Houttuyn, which can inhibit NLRP3 activation. However, whether leonurine hydrochloride plays a protective role in premature ovarian insufficiency through actions on NLRP3/GSDMD signaling is not yet known. METHODS: After cyclophosphamide-induced premature ovarian insufficiency was established in female mice, Leo was injected intraperitoneally over four weeks to evaluate the ovarian function and anti-pyroptosis effects using the metrics of fertility, serum hormone level, ovary weight, follicle number, expression of NLRP3/GSDMD pathway-related proteins, and serum IL-18 and IL-1ß levels. RESULTS: Intraperitoneal administration of leonurine hydrochloride was found to significantly protect fertility and maintain both serum hormone levels and follicle number in mice with premature ovarian insufficiency. Mice treated with leonurine hydrochloride consistently resisted cyclophosphamide-induced ovarian damage by inhibiting the activation of NLRP3 inflammasome, Caspase-1 and GSDMD in both ovarian tissue and granulosa cells, which led to lower levels of IL-18 and IL-1ß in the serum (p < 0.05, p < 0.01, p < 0.001). CONCLUSION: Intraperitoneal administration of leonurine hydrochloride prevents cyclophosphamide-induced premature ovarian insufficiency in mice by inhibiting NLRP3/GSDMD-mediated pyroptosis.


Assuntos
Interleucina-18 , Proteína 3 que Contém Domínio de Pirina da Família NLR , Camundongos , Feminino , Animais , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Inflamassomos/metabolismo , Ciclofosfamida , Hormônios
2.
Chem Biol Interact ; 366: 110144, 2022 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-36063855

RESUMO

BACKGROUND: Spermatogenesis dysfunction is common in clinically infertile patients. Geniposide (GP) is one of the important active ingredients extracted from Eucommia ulmoides. However, the protective effect and mechanism of GP in the treatment of spermatogenic dysfunction is not known yet. METHODS: After cyclophosphamide-induced spermatogenic dysfunction was established in male mice, we gavaged GP for 4 weeks to evaluate spermatogenic function and anti-apoptotic effects by fertility, testicular weight, sperm quality, endoplasmic reticulum stress (ER stress), comet assay and serum testosterone level. RESULTS: GP can improve the damage of fertility and reproductive organs induced by cyclophosphamide and increase the number and activity of sperm. In comet assay, it was found that GP administration could alleviate sperm DNA damage induced by cyclophosphamide. In addition, GP treatment can significantly reduce ThT fluorescence intensity and improve endoplasmic reticulum stress induced by cyclophosphamide. Besides, TUNEL staining and WB showed that GP could inhibit the excessive apoptosis of cells and protect testis. (p < 0.05, p < 0.01, p < 0.001). CONCLUSION: The protective effect of Geniposide on cyclophosphamide-induced spermatogenic dysfunction in mice is related to the inhibition of endoplasmic reticulum stress.


Assuntos
Estresse do Retículo Endoplasmático , Sementes , Animais , Apoptose , Ciclofosfamida , Iridoides , Masculino , Camundongos , Espermatogênese , Testículo , Testosterona/farmacologia
3.
Biomed Pharmacother ; 155: 113731, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-36179491

RESUMO

BACKGROUND: Chemotherapy is one of the causes of ovarian injury and infertility. Although assisted reproductive technology helps young female patients with cancer become pregnant, preventing chemotherapy-induced ovarian injury will often possess even more significant benefits. OBJECTIVE: We aimed at demonstrating the hazardous effects and mechanisms of ovarian injury by chemotherapeutic agents, as well as demonstrating agents that protect the ovary from chemotherapy-induced injury. RESULTS: Chemotherapeutic agents cause death or accelerate activation of follicles and damage to the blood vessels in the ovary, resulting in inflammation. These often require drug development to protect the ovaries from injury. CONCLUSIONS: Our findings provide a basis for the development of drugs to protect the ovaries from injury. Although there are many preclinical studies on potential protective drugs, there is still an urgent need for a large number of clinical experiments to verify their potential use.


Assuntos
Antineoplásicos , Doenças Ovarianas , Gravidez , Humanos , Feminino , Folículo Ovariano , Antineoplásicos/farmacologia , Substâncias Protetoras/farmacologia
4.
Front Pharmacol ; 12: 708467, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34588981

RESUMO

Most of the clinically infertile patients show spermatogenesis dysfunction. Cyclophosphamide, as an anticancer drug, can induce spermatogenesis dysfunction. Sesamin is the main bioactive component of natural lignans in sesame. It is abundant in sesame oil and has strong biological activities such as antioxidant, antibacterial, and hypoglycemic properties. By establishing the model of spermatogenic dysfunction induced by cyclophosphamide in male mice and then feeding sesamin (50, 100, and 200 mg/kg) for 2 weeks, we proved that sesamin can improve the reproductive organ damage induced by cyclophosphamide and increase the number and activity of sperms. Sesamin can resist cyclophosphamide-induced sperm nuclear maturity and DNA damage by increasing the expression levels of histones H2A and H2B in the testis. In addition, sesamin can improve the ubiquitination of histones regulated by RNF8 to protect the testis. In conclusion, these results suggest that sesamin can improve spermatogenic dysfunction induced by cyclophosphamide, which may be mediated by ubiquitination of histones.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...