Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Front Microbiol ; 15: 1347745, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38591030

RESUMO

Clarifying the relationship between soil microorganisms and the plant-soil system is crucial for encouraging the sustainable development of ecosystems, as soil microorganisms serve a variety of functional roles in the plant-soil system. In this work, the influence mechanisms of significant soil microbial groups on the plant-soil system and their applications in environmental remediation over the previous 30 years were reviewed using a systematic literature review (SLR) methodology. The findings demonstrated that: (1) There has been a general upward trend in the number of publications on significant microorganisms, including bacteria, fungi, and archaea. (2) Bacteria and fungi influence soil development and plant growth through organic matter decomposition, nitrogen, phosphorus, and potassium element dissolution, symbiotic relationships, plant growth hormone production, pathogen inhibition, and plant resistance induction. Archaea aid in the growth of plants by breaking down low-molecular-weight organic matter, participating in element cycles, producing plant growth hormones, and suppressing infections. (3) Microorganism principles are utilized in soil remediation, biofertilizer production, denitrification, and phosphorus removal, effectively reducing environmental pollution, preventing soil pathogen invasion, protecting vegetation health, and promoting plant growth. The three important microbial groups collectively regulate the plant-soil ecosystem and help maintain its relative stability. This work systematically summarizes the principles of important microbial groups influence plant-soil systems, providing a theoretical reference for how to control soil microbes in order to restore damaged ecosystems and enhance ecosystem resilience in the future.

2.
Front Microbiol ; 14: 1293353, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38075925

RESUMO

Different utilization patterns can alter the C, N, P cycles and their ecological stoichiometry characteristics in grassland soils. However, the effects of different utilization patterns on soil microbial biomass, microbial entropy and soil-microorganism stoichiometry imbalance of artificial grassland are not clear. So this study was took different utilization patterns of artificial grassland [i.e., grazing grassland (GG), mowing grassland (MG), enclosed grassland (EG)] as the research object to investigate responses of soil microbial biomass, microbial entropy and soil-microorganism stoichiometry imbalance to different utilization patterns in the karst rocky desertification control area. We found that the contents of microbial biomass carbon (MBC) and microbial biomass nitrogen (MBN) were highest in GG, and the content of microbial biomass phosphorus (MBP) was highest in EG. Soil microbial biomass entropy carbon (qMBC) and soil microbial biomass entropy nitrogen (qMBN) of GG and MG were higher than those of EG, but soil microbial biomass entropy phosphorus (qMBP) was opposite. C:N stoichiometry imbalance (C:Nimb) was EG > GG > MG, C:P stoichiometry imbalance (C:Pimb) was EG > MG > GG, N:P stoichiometry imbalance (N:Pimb) was MG > EG > GG. MBN was significantly positive correlated with C:Nimb and C:Pimb, MBC was significantly negative correlated with C:Pimb, MBP was significantly negative correlated with N:Pimb. The redundancy analysis (RDA) results showed that N:Pimb (p = 0.014), C:Nimb (p = 0.014), and C:P in the soil (C:Psoil, p = 0.028) had the most significant effect on microbial entropy. EG had a significant effect on soil microbial biomass and microbial entropy. The results of this study can directly or indirectly reflect the grassland soil quality under different utilization patterns in the karst rocky desertification area, which has a certain reference value for the degraded ecosystem restoration.

3.
Front Plant Sci ; 14: 1239190, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38148857

RESUMO

Plant functional traits serve as a bridge between plants, the environment, and ecosystem function, playing an important role in predicting the changes in ecosystem function that occur during ecological restoration. However, the response of grassland ecosystem function to plant functional traits in the context of ecological restoration in areas of karst desertification remains unclear. Therefore, in this study, we selected five plant functional traits [namely, plant height (H), specific leaf area (SLA), leaf dry matter content (LDMC), root length (RL), and root dry matter content (RDMC)], measured these along with community-weighted mean (CWM) and functional trait diversity, and combined these measures with 10 indexes related to ecosystem function in order to investigate the differences in plant functional traits and ecosystem function, as well as the relationship between plant functional traits and ecosystem functions, under four ecological restoration models [Dactylis glomerata (DG), Lolium perenne (LP), Lolium perenne + Trifolium repens (LT), and natural grassland (NG)]. We found that: 1) the Margalef index and Shannon-Wiener index were significantly lower for plant species in DG and LP than for those in NG (P<0.05), while the Simpson index was significantly higher in the former than in NG (P<0.05); 2) CWMH, CWMLDMC, and CWMRDMC were significantly higher in DG, LP, and LT than in NG, while CWMSLA was significantly lower in the former than in NG (P<0.05). The functional richness index (FRic) was significantly higher in DG and LP than in NG and LT, but the functional dispersion index (FDis) and Rao's quadratic entropy index (RaoQ) were significantly lower in DG and LP than in NG and LT (P<0.05), and there was no significant difference between DG and LP, or between NG and LT (P>0.05); 3) ecosystem function, including ecosystem productivity, carbon storage, water conservation and soil conservation, was highest in LT and lowest in NG; and 4) CWMLDMC (F=56.7, P=0.024), CWMRL (F=28.7, P=0.024), and CWMH (F=4.5, P=0.048) were the main factors affecting ecosystem function. The results showed that the mixed pasture of perennial ryegrass and white clover was most conductive to restoration of ecosystem function. This discovery has important implications for the establishment of vegetation, optimal utilization of resources, and the sustainable development of degraded karst ecosystems.

4.
Front Microbiol ; 14: 1208971, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37720153

RESUMO

Soil bacteria are closely related to soil environmental factors, and their community structure is an important indicator of ecosystem health and sustainability. A large number of artificial grasslands have been established to control rocky desertification in the karst areas of southern China, but the influence of different use patterns on the soil bacterial community in artificial grasslands is not clear. In this study, three grassland use patterns [i.e., grazing (GG), mowing (MG), and enclosure (EG)] were used to investigate the effects of different use patterns on the soil bacterial community in artificial grassland by using 16S rDNA Illumina sequencing and 12 soil environmental indicators. It was found that, compared with EG, GG significantly changed soil pH, increased alkaline hydrolyzable nitrogen (AN) content (P < 0.05), and decreased soil total phosphorus (TP) content (P < 0.05). However, MG significantly decreased the contents of soil organic carbon (SOC), total phosphorus (TP), available nitrogen (AN), ammonium nitrogen (NH4+-N), ß-1,4-glucosidase (BG), and N-acetyl-ß-D-glucamosonidase (NAG) (P < 0.05). The relative abundance of chemoheterotrophy was significantly decreased by GG and MG (P < 0.05). GG significantly increased the relative abundance of Acidobacteria and Gemmatimonadota (P < 0.05) and significantly decreased the relative abundance of Proteobacteria (P < 0.05), but the richness index (Chao 1) and diversity index (Shannon) of the bacterial community in GG, MG, and EG were not significantly different (P > 0.05). The pH (R2 = 0.79, P = 0.029) was the main factor affecting the bacterial community structure. This finding can provide a scientific reference for ecological restoration and sustainable utilization of grasslands in the karst desertification areas.

5.
Plants (Basel) ; 12(4)2023 Feb 08.
Artigo em Inglês | MEDLINE | ID: mdl-36840118

RESUMO

The structure and stability of grassland ecosystems have a significant impact on biodiversity, material cycling and productivity for ecosystem services. However, the issue of the structure and stability of grassland ecosystems has not been systematically reviewed. Based on the Web of Science (WOS) and China National Knowledge Infrastructure (CNKI) databases, we used the systematic-review method and screened 133 papers to describe and analyze the frontiers of research into the structure and stability of grassland ecosystems. The research results showed that: (1) The number of articles about the structure and stability of grassland ecosystems is gradually increasing, and the research themes are becoming increasingly diverse. (2) There is a high degree of consistency between the study area and the spatial distribution of grassland. (3) Based on the changes in ecosystem patterns and their interrelationships with ecosystem processes, we reviewed the research progress and landmark results on the structure, stability, structure-stability relationship and their influencing factors of grassland ecosystems; among them, the study of structure is the main research focus (51.12%), followed by the study of the influencing factors of structure and stability (37.57%). (4) Key scientific questions on structural optimization, stability enhancement and harmonizing the relationship between structure and stability are explored. (5) Based on the background of karst desertification control (KDC) and its geographical characteristics, three insights are proposed to optimize the spatial allocation, enhance the stability of grassland for rocky desertification control and coordinate the regulation mechanism of grassland structure and stability. This study provided some references for grassland managers and relevant policy makers to optimize the structure and enhance the stability of grassland ecosystems. It also provided important insights to enhance the service capacity of grassland ecosystems in KDC.

6.
Front Microbiol ; 13: 922989, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35966668

RESUMO

Soil bacteria play an important role in regulating the process of vegetation restoration in karst ecosystems. However, the effects of vegetation restoration for different cultivated pastures on soil bacterial communities in the karst rocky desertification regions remain unclear. Therefore, we hypothesized that mixed pasture is the most effective for soil bacterial communities among different vegetation restorations. In this study, we systematically studied the soil properties and soil bacterial communities in four vegetation restoration modes [i.e., Dactylis glomerata pasture (DG), Lolium perenne pasture (LP), Lolium perenne + Trifolium repens mixed pasture (LT), and natural grassland (NG)] by using 16S rDNA Illumina sequencing, combined with six soil indicators and data models. We found that the vegetation restoration of cultivated pastures can improve the soil nutrient content compared with the natural grassland, especially LT treatment. LT treatment significantly increased the MBC content and Shannon index. The vegetation restoration of cultivated pastures significantly increased the relative abundance of Proteobacteria, but LT treatment significantly decreased the relative abundance of Acidobacteria. Soil pH and MBC significantly correlated with the alpha diversity of soil bacterial. Soil pH and SOC were the main factors that can affect the soil bacterial community. FAPROTAX analysis showed LT treatment significantly decreased the relative abundance of aerobic chemoheterotrophs. The results showed that the bacterial communities were highly beneficial to soil restoration in the LT treatment, and it confirmed our hypothesis. This finding provides a scientific reference for the restoration of degraded ecosystems in karst rocky desertification areas.

7.
Insects ; 13(6)2022 May 26.
Artigo em Inglês | MEDLINE | ID: mdl-35735836

RESUMO

Karst rocky desertification is one of the main causes of habitat fragmentation in Southwest China. Guizhou Province is located in the center of the karst area in southern China and is a typical karst ecological environment fragile area. Many studies have shown that habitat fragmentation is the main factor leading to the loss of biodiversity and species extinction, and it is also one of the important factors that threaten the survival of natural organisms. This study initially explored the habitat fragmentation degree, species diversity, and genetic diversity of leafhoppers in three typical karst areas in Guizhou. The study was combined with the general situation of the study area, understanding the main factors affecting habitat fragmentation, and putting forward reasonable protection suggestions for species resources. Based on satellite imagery, field survey collection, molecular sequencing data, and related index measurement methods, we measured the habitat fragmentation degree, species diversity index, and genetic diversity index of Erythroneurine leafhoppers of Shibing Yuntai Mountain Nature Reserve, Bijie Salaxi Demonstration Zone, Zhenfeng-Huajiang Demonstration Zone. Moreover, we compared the differences in the three study areas, carried out correlation analysis with relevant environmental factors, and discussed the main factors that formed the results. The results of the study show that the species diversity and genetic diversity of Erythroneurine leafhoppers in the study areas are affected by habitat fragmentation, and the weaker the degree of habitat fragmentation in the region, the higher the species diversity and genetic diversity, which is specifically manifested in species, quantity, and gene-flow. Understanding the status of biodiversity in karst areas is conducive to the sustainable development of biological resources. In order to better protect the diversity of such insects and their host plants and other biological diversity, combined with the background of the research area, we propose corresponding protection measures for reference.

8.
Plants (Basel) ; 11(10)2022 May 11.
Artigo em Inglês | MEDLINE | ID: mdl-35631715

RESUMO

Karst desertification control of grasslands balances the ecological and economic benefits of ecological restoration and rural ecological animal husbandry development. In the context of global changes and intensified human activities, the fragility of grassland ecosystems under karst desertification control is becoming increasingly evident, and enhancing the ecological resilience and ecosystem services of grasslands is an issue that urgently needs to be addressed. In this paper, the CNKI literature, WOS core databases and Goolgle scholar were used as search sources, identifying 179 articles related to the study of grassland ecosystem vulnerability and ecological resilience. This research systematically reviewed the progress of grassland ecosystem vulnerability research and analyzed the relationship between grassland ecosystem services (GESs) and grassland ecosystem vulnerability and resilience. The direction of enhancing GESs in karst areas is indicated in terms of the reciprocal feedback, synergistic relationship, and mechanism of action of GESs, vulnerability, and resilience. It is also emphasized that the karst desertification area should provide an ecological foundation for the sustainable development of the regional environment around the supply-and-demand relationship of GESs, the trade-off synergy of service flow, and the enhancement of ecological resilience, thereby consolidating the effectiveness of karst desertification control, enhancing GESs, and helping rural revitalization.

9.
Artigo em Inglês | MEDLINE | ID: mdl-35457348

RESUMO

The rocky desertification control project in karst areas exacerbates the transfer of landscape types, changes the ecosystem structure and function, and has a significant impact on ecological assets. How to analyze the relationship between landscape type shifts and the spatial and temporal evolution of ecological assets is one of the key questions that need to be addressed to achieve the goal of overall improvement in ecosystem quality and sustainable regional economic development. This study takes Qixingguan District, Bijie City, Guizhou Province-a typical karst plateau mountainous area-as the research object, and analyzes the spatial and temporal evolution characteristics of landscape type shifts and ecological assets triggered by rock desertification management from 1995-2018, based on the equivalence factor method, combined with the contribution rate, spatial autocorrelation, and sensitivity research methods. The results showed that arable land, grassland, and woodland were the main landscape types in the study area. The value of ecological assets showed a trend of increasing and then decreasing, with an overall increase of 87.70 × 106 yuan. The distribution pattern of ecological asset value from southwest to northeast is "high-low-high". There is a significant positive correlation in the spatial distribution of the overall ecological assets, with similar aggregation between neighboring units. The expansion of forest land was the main factor for the rapid increase of assets from 1995 to 2010, with a contribution of 98.12%; the conversion of arable land and grassland to construction land was the main factor for the decrease of assets from 2010 to 2018, with a percentage of 81.06%, where the value of each type of service was mainly composed of five items, such as soil formation and conservation, biodiversity conservation and gas regulation, water conservation, and climate regulation. This study shows that spatial and temporal evolution assessment of ecological assets is an important manifestation of the effectiveness of rocky desertification control, which can provide decision support to resource managers and users for regional ecological environment construction.


Assuntos
Conservação dos Recursos Naturais , Ecossistema , Biodiversidade , China , Cidades , Florestas
10.
Biol Trace Elem Res ; 198(1): 142-148, 2020 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-31965424

RESUMO

As a consequence of contracted and fenced grassland, the incidence of edema pathema in the Hequ horse is rising. The main pathological symptoms are edema, emaciation, anemia, heterophilia, inappetence, and dyskinesia. To study the cause of edema disease in Hequ horse, the Hequ horse farm with a high incidence was chosen as the experimental pasture, and the Azi husbandry experimental station without edema disorder was the control pasture. The research methods in this paper are included: (1) The mineral contents in soil, forage, blood, and liver were analyzed. (2) Routine parameters and biochemical values in blood were also measured. (3) Conduct a prevention trial and a treatment experiment. The results showed that Se contents in soil and forage was much significantly lower than that in the control group (P < 0.01), and there was no significant difference in other elements. Se contents in blood and liver in affected animals were very significantly lower than those of the control group (P < 0.01). Hb, HCT, MCV, and MCH were greatly significantly lower than those in the control group (P < 0.01). Activities of GSH-Px in blood were very significantly lower than those of the control group (P < 0.01). Before the onset season of the disorder in the affected area, Na2SeO3 was used to conduct a prevention trial on 1576 Hequ horses. A dose of 0.03 mg Na2SeO3 was given orally per kilogram of body weight, once every 15 days and twice continuously. There was no edema illness that year. In the treatment experiment, 235 horses were administered Na2SeO3 orally at 0.04 mg per kilogram of body weight, once every 3 days for 4 consecutive times, and 198 horses were cured, with a cure rate of 84.26%. Therefore, it is possible that Hequ horse edema pathema is caused by Se deficiency in soil and forage.


Assuntos
Edema , Solo , Animais , Cavalos , Estações do Ano , Tibet
11.
PLoS One ; 14(10): e0207423, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31658263

RESUMO

A diagnosis of heavy metal poisoning in sheep living on pastures in the vicinity of a smelting facility in the Wumeng mountain area of China was based on laboratory tests and clinical symptoms. Furthermore, heavy metal contamination in the food chain was found to have a deleterious effect on the health of local residents. The levels of copper(Cu), zinc(Zn), cadmium (Cd), and lead (Pb) in irrigation water, soil, forages, and animal tissues were measured in samples taken from the vicinity of a smelting facility and control samples. Heavy metal contents in food (corn, rice, and wheat), as well as in human tissues (blood and hair) obtained from local residents were also determined. Hematological values were also determined in human and animal samples. The content of Cu, Zn, Cd, and Pb in irrigation water, soils, and forages were markedly higher in affected areas than in samples from healthy pastures. Concentrations of Cd and Pb were 177.82 and 16.61 times greater in forages than controls, respectively, and 68.71 and 15.66 times greater in soils than controls, respectively. The heavy metal content in food (corn, rice, and wheat) from affected areas was markedly higher than in the control samples. Cd and Pb content in the tissues of affected sheep were markedly higher than in control animals (P < 0.01), while concentrations of Cd and Pb in blood and hair samples from local residents were markedly higher than in control samples (P < 0.01). The occurrence of anemia in affected humans and animals followed a hypochromic and microcytic pattern. The intake of Cd and Pb was estimated according to herbage ingestion rates. It was found that the levels of Cd and Pb which accumulated in sheep through the ingestion of vegetation growing in the sites closest to the smelter were approximately 3.36 and 38.47 mg/kg body wt./day, respectively. Such levels surpassed the fatal dosages for sheep of 1.13 mg Cd/kg body wt/day and 4.42 mg Pb/kg body wt./day. The serum total antioxidant capacity in affected humans and animals was significantly lower than in the controls (P < 0.01). Serum protein parameters in affected humans and animals were significantly reduced (P < 0.01); therefore, it was concluded that heavy metal contamination caused harm to sheep, and also posed a significant risk to humans living in the vicinity of the zinc smelting facility.


Assuntos
Produção Agrícola , Produtos Agrícolas/crescimento & desenvolvimento , Poluição Ambiental , Metalurgia , Metais Pesados , Zinco , Animais , China/epidemiologia , Monitoramento Ambiental , Intoxicação por Metais Pesados/epidemiologia , Humanos , Metais Pesados/análise , Metais Pesados/toxicidade
12.
J Proteomics ; 203: 103389, 2019 07 15.
Artigo em Inglês | MEDLINE | ID: mdl-31129266

RESUMO

The Przewalski's gazelle shows long-term survival in a selenium (Se)-deficient environment, but fails to exhibit obvious pathological manifestations. To reveal proteomic changes in the Przewalski's gazelle in response to Se-deficiency, twenty Przewalski's gazelle were randomly divided into control group and Se-deficient group. After induction of Se-deficiency animal model, blood samples were collected from eight animals. An isobaric tag for relative and absolute quantitation (iTRAQ)-liquid chromatography-tandem mass spectrometry (LC-MS/MS) proteomics approach was employed to explore blood protein alterations and potential mechanisms of the response to Se-deficiency challenge. Se deficiency contributed to a remarkable change in blood Se levels and routine blood indexes. In proteomic analyses, 130 proteins were differentially accumulated in the Se-deficient and control groups. The differentially expressed proteins were annotated mainly as single-organism process, extracellular region, or binding, respectively, and they were highly enriched in the coagulation and complement cascades. Protein-protein interaction analysis showed several important nodal proteins involved in the regulation of binding, cellular biochemical processes, and signal transduction pathways. To our knowledge, this study is the first to comprehensively analyze blood protein changes in the Przewalski's gazelle under Se-deficient conditions, which reveal that this species has developed physiological mechanisms of adaptation in response to Se-deficiency stress. SIGNIFICANCE: The present study is the first to comprehensively analyze alterations in the protein profiles induced by Se deficiency in the blood of the Przewalski's gazelle, showing that Se-deficiency contributed to a significant reduction in blood Se levels and marked changes in blood parameters, which will likely contribute to a better understanding of the molecular mechanisms of the changes in protein abundance in the Przewalski's gazelle in response to Se-deficiency stress.


Assuntos
Adaptação Fisiológica , Antílopes/fisiologia , Proteômica/métodos , Selênio/deficiência , Animais , Proteínas Sanguíneas/análise , Proteínas Sanguíneas/metabolismo , Cromatografia Líquida , Regulação da Expressão Gênica , Mapeamento de Interação de Proteínas , Selênio/sangue , Espectrometria de Massas em Tandem
13.
Asian-Australas J Anim Sci ; 32(6): 896-903, 2019 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-30744368

RESUMO

OBJECTIVE: Qianbei-Pockmarked goats are affected by a disorder locally referred to as 'Ruanguzheng Disorder', which is characterized by emaciation, lameness, muscular relaxation, stiffness of the extremities, and abnormal curvatures of the long bones. Our objective was to determine the relationship between the disorder and phosphorus deficiency. METHODS: Tissue samples were collected from affected and healthy animals, while soil and herbage samples were collected from affected and healthy pastures. Biochemical parameters were determined using an automatic biochemical analyzer (OLYMPUS AU 640, Olympus Optical Co., Tokyo, Japan). Mineral contents in soil, forage, and tissue were determined using a Perkin-Elmer AAS5000 atomic absorption spectrophotometer (Perkin-Elmer, Norwalk, CT, USA). RESULTS: The results showed that phosphorus contents in herbages from affected pastures were markedly lower than those from healthy areas (p<0.01), and the ratio of calcium to phosphorus in the affected herbages was 12.93:1. The phosphorus contents of wool, blood, tooth, and bone from affected animals were also markedly lower than those from healthy animals (p<0.01). Serum phosphorus values in affected animals were much lower than those in healthy animals, while serum alkaline phosphatase values from affected animals were markedly higher than those from healthy animals (p<0.01). Inorganic phosphorus values from affected animals were approximately half of that in the control group. Supplementation of disodium hydrogen phosphate prevented and cured the disorder. CONCLUSION: This study demonstrates that Ruanguzheng disorder in Qianbei-Pockmarked goats is primarily caused by phosphorus deficiencies in herbage due to fenced pastures and natural habitat fragmentation.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...