Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Front Neurol ; 12: 598554, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34367042

RESUMO

Objective: This study examined the activation difference of muscles innervated by cervical cord 5-6 (C5-C6) and cervical cord 8- thoracic cord 1 (C8-T1) in upper limb flexion synergy after stroke. Methods: Surface electromyography (sEMG) signals were collected during elbow flexion in stroke patients and healthy controls. The study compared normalized activation of two pairs of muscles that could cause similar joint movement but which dominated different spinal cord segments (clavicular part of the pectoralis major, PC vs. Sternocostal part of the pectoralis major, PS; Flexor carpi radialis, FCR vs. Flexor carpi ulnaris, FCU). In each muscle pair, one muscle was innervated by the same spinal cord segment (C5-C6), dominating the elbow flexion and the other was not. The comparison of the activation of the same muscle between patients and healthy controls was undertaken after standardization based on the activation of the biceps brachii in elbow flexion. Results: There was no difference between the PC and PS's normalized activation in healthy controls while the PC's normalized activation was higher than PS in stroke patients during elbow flexion. Similarly, there was no significant difference in normalized activation between FCR and FCU in healthy controls, and the same is true for stroke patients. However, the standardized activation of both FCR and FCU in stroke patients was significantly lower than that in healthy controls. Conclusion: After stroke, the activation of the distal muscles of the upper limb decreased significantly regardless of the difference of spinal cord segments; while the activation of the proximal muscles innervated by the same spinal cord segment (C5-C6) dominating the elbow flexion showed higher activation during flexion synergy. The difference in muscle activation based on spinal cord segments may be the reason for the stereotyped joint movement of upper limb flexion synergy.

2.
Elife ; 102021 07 27.
Artigo em Inglês | MEDLINE | ID: mdl-34313218

RESUMO

Sleep is essential in maintaining physiological homeostasis in the brain. While the underlying mechanism is not fully understood, a 'synaptic homeostasis' theory has been proposed that synapses continue to strengthen during awake and undergo downscaling during sleep. This theory predicts that brain excitability increases with sleepiness. Here, we collected transcranial magnetic stimulation measurements in 38 subjects in a 34 hr program and decoded the relationship between cortical excitability and self-report sleepiness using advanced statistical methods. By utilizing a combination of partial least squares regression and mixed-effect models, we identified a robust pattern of excitability changes, which can quantitatively predict the degree of sleepiness. Moreover, we found that synaptic strengthen occurred in both excitatory and inhibitory connections after sleep deprivation. In sum, our study provides supportive evidence for the synaptic homeostasis theory in human sleep and clarifies the process of synaptic strength modulation during sleepiness.


Assuntos
Encéfalo/fisiologia , Excitabilidade Cortical/fisiologia , Eletroencefalografia , Sono/fisiologia , Estimulação Magnética Transcraniana , Adulto , Feminino , Voluntários Saudáveis , Humanos , Masculino , Privação do Sono , Sonolência , Adulto Jovem
3.
Front Neurol ; 11: 544912, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33329299

RESUMO

Objective: To study differential post-stroke changes of excitability of spinal motor neurons innervating a group of antagonist muscles of ankle and their effects on foot inversion. Methods: F waves in tibialis anterior (TA) and peroneus muscles (PN) were recorded. The condition of spasticity and foot inversion in stroke patients were also evaluated. The differences of F wave parameters between patients and healthy controls (HC), as well as TA and PN, were investigated. Results: There were natural differences in the persistence of the F waves (Fp) and F/M amplitude ratio (F/M) between TA and PN in HC. Stroke patients showed significantly higher F/M in TA and PN, while there was no difference in Fp comparing to HC. The natural differences in F wave parameters between TA and PN were differentially retained after stroke. The natural difference of the two muscles in Fp remained unchanged and the F/M difference disappeared in those without spasticity or foot inversion, while the Fp difference disappeared and the F/M difference remained in those with spasticity or foot inversion. Conclusion: Based on the natural difference of the number and size of spinal motor neurons innervating TA and PN, their excitability may change differently according to the severity of the stroke, which may be the reason of foot inversion.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...