Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Biol Eng ; 9: 4, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25866560

RESUMO

3D Printing promises to produce complex biomedical devices according to computer design using patient-specific anatomical data. Since its initial use as pre-surgical visualization models and tooling molds, 3D Printing has slowly evolved to create one-of-a-kind devices, implants, scaffolds for tissue engineering, diagnostic platforms, and drug delivery systems. Fueled by the recent explosion in public interest and access to affordable printers, there is renewed interest to combine stem cells with custom 3D scaffolds for personalized regenerative medicine. Before 3D Printing can be used routinely for the regeneration of complex tissues (e.g. bone, cartilage, muscles, vessels, nerves in the craniomaxillofacial complex), and complex organs with intricate 3D microarchitecture (e.g. liver, lymphoid organs), several technological limitations must be addressed. In this review, the major materials and technology advances within the last five years for each of the common 3D Printing technologies (Three Dimensional Printing, Fused Deposition Modeling, Selective Laser Sintering, Stereolithography, and 3D Plotting/Direct-Write/Bioprinting) are described. Examples are highlighted to illustrate progress of each technology in tissue engineering, and key limitations are identified to motivate future research and advance this fascinating field of advanced manufacturing.

2.
J Biomed Mater Res B Appl Biomater ; 103(7): 1415-23, 2015 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-25404276

RESUMO

Three-dimensional printing (3DP) uses inkjet printheads to selectively deposit liquid binder to adjoin powder particles in a layer-by-layer fashion to create a computer-modeled 3D object. Two general approaches for 3DP have been described for biomedical applications (direct and indirect 3DP). The two approaches offer competing advantages, and both are limited by print resolution. This study describes a materials processing strategy to enhance 3DP resolution by controlled shrinking net-shape scaffolds. Briefly, porogen preforms are printed and infused with the desired monomer or polymer solution. After solidification or polymerization, the porogen is leached and the polymer is allowed to shrink by controlled drying. Heat treatment is performed to retain the dimensions against swelling forces. The main objective of this study is to determine the effects of polymer content and post-processing on dimension, microstructure, and thermomechanical properties of the scaffold. For polyethylene glycol diacrylate (PEG-DA), reducing polymer content corresponded with greater shrinkage with maximum shrinkage of ∼80 vol% at 20% vol% PEG-DA. The secondary heat treatment retains the microarchitecture and new dimensions of the scaffolds, even when the heat-treated scaffolds are immersed into water. To demonstrate shrinkage predictability, 3D components with interlocking positive and negative features were printed, processed, and fitted. This material processing strategy provides an alternative method to enhance the resolution of 3D scaffolds, for a wide range of polymers, without optimizing the binder-powder interaction physics to print each material combination.


Assuntos
Polietilenoglicóis/química , Impressão Tridimensional , Alicerces Teciduais/química , Porosidade
3.
Biofabrication ; 7(1): 015002, 2014 Dec 17.
Artigo em Inglês | MEDLINE | ID: mdl-25514829

RESUMO

Direct three-dimensional printing (3DP) produces the final part composed of the powder and binder used in fabrication. An advantage of direct 3DP is control over both the microarchitecture and macroarchitecture. Prints which use porogen incorporated in the powder result in high pore interconnectivity, uniform porosity, and defined pore size after leaching. The main limitations of direct 3DP for synthetic polymers are the use of organic solvents which can dissolve polymers used in most printheads and limited resolution due to unavoidable spreading of the binder droplet after contact with the powder. This study describes a materials processing strategy to eliminate the use of organic solvent during the printing process and to improve 3DP resolution by shrinking with a non-solvent plasticizer. Briefly, poly(lactic-co-glycolic acid) (PLGA) powder was prepared by emulsion solvent evaporation to form polymer microparticles. The printing powder was composed of polymer microparticles dry mixed with sucrose particles. After printing with a water-based liquid binder, the polymer microparticles were fused together to form a network by solvent vapor in an enclosed vessel. The sucrose is removed by leaching and the resulting scaffold is placed in a solution of methanol. The methanol acts as a non-solvent plasticizer and allows for polymer chain rearrangement and efficient packing of polymer chains. The resulting volumetric shrinkage is ∼80% at 90% methanol. A complex shape (honey-comb) was designed, printed, and shrunken to demonstrate isotropic shrinking with the ability to reach a final resolution of ∼400 µm. The effect of type of alcohol (i.e. methanol or ethanol), concentration of alcohol, and temperature on volumetric shrinking was studied. This study presents a novel materials processing strategy to overcome the main limitations of direct 3DP to produce high resolution PLGA scaffolds.


Assuntos
Ácido Láctico/química , Ácido Poliglicólico/química , Impressão Tridimensional , Alicerces Teciduais/química , Varredura Diferencial de Calorimetria , Metanol/química , Microtecnologia , Plastificantes/química , Copolímero de Ácido Poliláctico e Ácido Poliglicólico , Solventes , Sacarose/química , Temperatura
4.
Adv Healthc Mater ; 1(4): 480-4, 2012 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-23184781

RESUMO

A biomimetic delivery strategy for transforming growth factor beta (TGF-ß) is described, in which TGF-ß is presented in a latent form (the small latent complex, SLC), which is inactive until modified by the actions of the cells. In this work, SLC is tethered to a hyaluronic acid hydrogel scaffold to enhance in vitro chondrogenesis.


Assuntos
Cartilagem/crescimento & desenvolvimento , Condrócitos/citologia , Condrócitos/fisiologia , Engenharia Tecidual/instrumentação , Alicerces Teciduais , Fator de Crescimento Transformador beta/química , Fator de Crescimento Transformador beta/farmacologia , Animais , Cartilagem/citologia , Bovinos , Células Cultivadas , Desenho de Equipamento , Análise de Falha de Equipamento , Hidrogéis/química , Engenharia Tecidual/métodos
5.
J Orthop Res ; 26(7): 951-6, 2008 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-18271010

RESUMO

The axial and radial compressive moduli of the human meniscus are important material properties in tibiofemoral joint models, but they have not been determined previously for fresh-frozen tissue. Our goals were to measure the moduli at equilibrium and at a physiological strain rate, to determine whether the axial and radial compressive moduli are equal for each type of loading, and to determine whether they depend on the region (i.e., anterior, middle, posterior) of the meniscus. Samples from each region from 10 fresh-frozen human medial menisci were tested in unconfined compression at four strain levels (3%, 6%, 9%, and 12%) at 32%/s, a strain rate determined to be physiologically relevant to walking, and then allowed to reach equilibrium in stress relaxation. At equilibrium, the axial and radial compressive moduli at 12% strain were 83.4 kPa and 76.1 kPa, respectively (p = 0.58), whereas at the physiological strain rate, the axial and radial compressive moduli at 12% strain were 718 kPa and 605 kPa, respectively (p = 0.61). At the physiological strain rate, the modulus increased with increasing strain (79.2 kPa at 3% strain vs. 662 kPa at 12% strain) and the modulus in the anterior region (1,048 kPa at 12% strain) was significantly greater than that in the posterior region (329 kPa at 12% strain) (p = 0.04). Our study supports a plane of isotropy for the material properties of meniscal tissue. However, the material behavior is strongly nonlinear because the compressive modulus is several orders of magnitude smaller than previously reported values for tensile modulus. Further, the compressive modulus depends on the activity of interest (i.e., static such as standing or dynamic such as walking) due to viscoelastic effects, the strain level, and the region of the tissue.


Assuntos
Meniscos Tibiais/fisiologia , Caminhada/fisiologia , Adulto , Fenômenos Biomecânicos , Humanos , Pessoa de Meia-Idade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...