Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nat Struct Mol Biol ; 31(3): 498-512, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38182927

RESUMO

Three-dimensional (3D) epigenome remodeling is an important mechanism of gene deregulation in cancer. However, its potential as a target to counteract therapy resistance remains largely unaddressed. Here, we show that epigenetic therapy with decitabine (5-Aza-mC) suppresses tumor growth in xenograft models of pre-clinical metastatic estrogen receptor positive (ER+) breast tumor. Decitabine-induced genome-wide DNA hypomethylation results in large-scale 3D epigenome deregulation, including de-compaction of higher-order chromatin structure and loss of boundary insulation of topologically associated domains. Significant DNA hypomethylation associates with ectopic activation of ER-enhancers, gain in ER binding, creation of new 3D enhancer-promoter interactions and concordant up-regulation of ER-mediated transcription pathways. Importantly, long-term withdrawal of epigenetic therapy partially restores methylation at ER-enhancer elements, resulting in a loss of ectopic 3D enhancer-promoter interactions and associated gene repression. Our study illustrates the potential of epigenetic therapy to target ER+ endocrine-resistant breast cancer by DNA methylation-dependent rewiring of 3D chromatin interactions, which are associated with the suppression of tumor growth.


Assuntos
Neoplasias da Mama , Humanos , Feminino , Neoplasias da Mama/tratamento farmacológico , Neoplasias da Mama/genética , Neoplasias da Mama/patologia , Decitabina/farmacologia , Decitabina/uso terapêutico , Decitabina/metabolismo , Epigenoma , Metilação de DNA/genética , Cromatina , Epigênese Genética , DNA/metabolismo , Regulação Neoplásica da Expressão Gênica
2.
Cell Rep ; 36(12): 109722, 2021 09 21.
Artigo em Inglês | MEDLINE | ID: mdl-34551299

RESUMO

DNA replication timing and three-dimensional (3D) genome organization are associated with distinct epigenome patterns across large domains. However, whether alterations in the epigenome, in particular cancer-related DNA hypomethylation, affects higher-order levels of genome architecture is still unclear. Here, using Repli-Seq, single-cell Repli-Seq, and Hi-C, we show that genome-wide methylation loss is associated with both concordant loss of replication timing precision and deregulation of 3D genome organization. Notably, we find distinct disruption in 3D genome compartmentalization, striking gains in cell-to-cell replication timing heterogeneity and loss of allelic replication timing in cancer hypomethylation models, potentially through the gene deregulation of DNA replication and genome organization pathways. Finally, we identify ectopic H3K4me3-H3K9me3 domains from across large hypomethylated domains, where late replication is maintained, which we purport serves to protect against catastrophic genome reorganization and aberrant gene transcription. Our results highlight a potential role for the methylome in the maintenance of 3D genome regulation.


Assuntos
Metilação de DNA , Período de Replicação do DNA/fisiologia , Genoma Humano , Linhagem Celular Tumoral , Cromatina/metabolismo , DNA (Citosina-5-)-Metiltransferase 1/genética , DNA (Citosina-5-)-Metiltransferase 1/metabolismo , Bases de Dados Genéticas , Expressão Gênica , Histonas/metabolismo , Humanos , Análise de Sequência de DNA/métodos
3.
Nat Med ; 27(2): 310-320, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-33462444

RESUMO

The role of the androgen receptor (AR) in estrogen receptor (ER)-α-positive breast cancer is controversial, constraining implementation of AR-directed therapies. Using a diverse, clinically relevant panel of cell-line and patient-derived models, we demonstrate that AR activation, not suppression, exerts potent antitumor activity in multiple disease contexts, including resistance to standard-of-care ER and CDK4/6 inhibitors. Notably, AR agonists combined with standard-of-care agents enhanced therapeutic responses. Mechanistically, agonist activation of AR altered the genomic distribution of ER and essential co-activators (p300, SRC-3), resulting in repression of ER-regulated cell cycle genes and upregulation of AR target genes, including known tumor suppressors. A gene signature of AR activity positively predicted disease survival in multiple clinical ER-positive breast cancer cohorts. These findings provide unambiguous evidence that AR has a tumor suppressor role in ER-positive breast cancer and support AR agonism as the optimal AR-directed treatment strategy, revealing a rational therapeutic opportunity.


Assuntos
Androgênios/farmacologia , Neoplasias da Mama/genética , Receptor alfa de Estrogênio/genética , Receptores Androgênicos/genética , Neoplasias da Mama/tratamento farmacológico , Neoplasias da Mama/patologia , Linhagem Celular Tumoral , Proliferação de Células/genética , Quinase 4 Dependente de Ciclina/antagonistas & inibidores , Quinase 4 Dependente de Ciclina/genética , Quinase 6 Dependente de Ciclina/antagonistas & inibidores , Quinase 6 Dependente de Ciclina/genética , Feminino , Humanos , Células MCF-7 , Coativador 3 de Receptor Nuclear/genética , Receptores Androgênicos/efeitos dos fármacos , Transdução de Sinais/efeitos dos fármacos
4.
Breast Cancer Res ; 22(1): 87, 2020 08 12.
Artigo em Inglês | MEDLINE | ID: mdl-32787886

RESUMO

BACKGROUND: Resistance to endocrine therapy is a major clinical challenge in the management of oestrogen receptor (ER)-positive breast cancer. In this setting, p53 is frequently wildtype and its activity may be suppressed via upregulation of its key regulator MDM2. This underlies our rationale to evaluate MDM2 inhibition as a therapeutic strategy in treatment-resistant ER-positive breast cancer. METHODS: We used the MDM2 inhibitor NVP-CGM097 to treat in vitro and in vivo models alone and in combination with fulvestrant or palbociclib. We perform cell viability, cell cycle, apoptosis and senescence assays to evaluate anti-tumour effects in p53 wildtype and p53 mutant ER-positive cell lines (MCF-7, ZR75-1, T-47D) and MCF-7 lines resistant to endocrine therapy and to CDK4/6 inhibition. We further assess the drug effects in patient-derived xenograft (PDX) models of endocrine-sensitive and endocrine-resistant ER-positive breast cancer. RESULTS: We demonstrate that MDM2 inhibition results in cell cycle arrest and increased apoptosis in p53-wildtype in vitro and in vivo breast cancer models, leading to potent anti-tumour activity. We find that endocrine therapy or CDK4/6 inhibition synergises with MDM2 inhibition but does not further enhance apoptosis. Instead, combination treatments result in profound regulation of cell cycle-related transcriptional programmes, with synergy achieved through increased antagonism of cell cycle progression. Combination therapy pushes cell lines resistant to fulvestrant or palbociclib to become senescent and significantly reduces tumour growth in a fulvestrant-resistant patient-derived xenograft model. CONCLUSIONS: We conclude that MDM2 inhibitors in combination with ER degraders or CDK4/6 inhibitors represent a rational strategy for treating advanced, endocrine-resistant ER-positive breast cancer, operating through synergistic activation of cell cycle co-regulatory programmes.


Assuntos
Protocolos de Quimioterapia Combinada Antineoplásica/farmacologia , Neoplasias da Mama/tratamento farmacológico , Quinase 4 Dependente de Ciclina/antagonistas & inibidores , Quinase 6 Dependente de Ciclina/antagonistas & inibidores , Resistencia a Medicamentos Antineoplásicos , Proteínas Proto-Oncogênicas c-mdm2/antagonistas & inibidores , Receptores de Estrogênio/metabolismo , Animais , Apoptose , Neoplasias da Mama/patologia , Linhagem Celular Tumoral , Proliferação de Células , Feminino , Fulvestranto/administração & dosagem , Humanos , Isoquinolinas/administração & dosagem , Camundongos , Camundongos Endogâmicos NOD , Camundongos SCID , Piperazinas/administração & dosagem , Piridinas/administração & dosagem , Ensaios Antitumorais Modelo de Xenoenxerto
5.
Nat Commun ; 9(1): 2311, 2018 06 13.
Artigo em Inglês | MEDLINE | ID: mdl-29899353

RESUMO

Understanding the dynamics of endogenous protein-protein interactions in complex networks is pivotal in deciphering disease mechanisms. To enable the in-depth analysis of protein interactions in chromatin-associated protein complexes, we have previously developed a method termed RIME (Rapid Immunoprecipitation Mass spectrometry of Endogenous proteins). Here, we present a quantitative multiplexed method (qPLEX-RIME), which integrates RIME with isobaric labelling and tribrid mass spectrometry for the study of protein interactome dynamics in a quantitative fashion with increased sensitivity. Using the qPLEX-RIME method, we delineate the temporal changes of the Estrogen Receptor alpha (ERα) interactome in breast cancer cells treated with 4-hydroxytamoxifen. Furthermore, we identify endogenous ERα-associated proteins in human Patient-Derived Xenograft tumours and in primary human breast cancer clinical tissue. Our results demonstrate that the combination of RIME with isobaric labelling offers a powerful tool for the in-depth and quantitative characterisation of protein interactome dynamics, which is applicable to clinical samples.


Assuntos
Cromatina/metabolismo , Espectrometria de Massas/métodos , Mapeamento de Interação de Proteínas/métodos , Animais , Neoplasias da Mama/metabolismo , Cromatina/química , Cromatina/efeitos dos fármacos , Receptor alfa de Estrogênio/química , Receptor alfa de Estrogênio/metabolismo , Feminino , Xenoenxertos , Humanos , Células MCF-7 , Camundongos , Complexos Multiproteicos/química , Complexos Multiproteicos/metabolismo , Mapas de Interação de Proteínas/efeitos dos fármacos , Moduladores Seletivos de Receptor Estrogênico/farmacologia , Tamoxifeno/análogos & derivados , Tamoxifeno/farmacologia
6.
Front Oncol ; 6: 7, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-26858935

RESUMO

MDM2 and MDMX are the primary negative regulators of p53, which under normal conditions maintain low intracellular levels of p53 by targeting it to the proteasome for rapid degradation and inhibiting its transcriptional activity. Both MDM2 and MDMX function as powerful oncogenes and are commonly over-expressed in some cancers, including sarcoma (~20%) and breast cancer (~15%). In contrast to tumors that are p53 mutant, whereby the current therapeutic strategy restores the normal active conformation of p53, MDM2 and MDMX represent logical therapeutic targets in cancer for increasing wild-type (WT) p53 expression and activities. Recent preclinical studies suggest that there may also be situations that MDM2/X inhibitors could be used in p53 mutant tumors. Since the discovery of nutlin-3a, the first in a class of small molecule MDM2 inhibitors that binds to the hydrophobic cleft in the N-terminus of MDM2, preventing its association with p53, there is now an extensive list of related compounds. In addition, a new class of stapled peptides that can target both MDM2 and MDMX have also been developed. Importantly, preclinical modeling, which has demonstrated effective in vitro and in vivo killing of WT p53 cancer cells, has now been translated into early clinical trials allowing better assessment of their biological effects and toxicities in patients. In this overview, we will review the current MDM2- and MDMX-targeted therapies in development, focusing particularly on compounds that have entered into early phase clinical trials. We will highlight the challenges pertaining to predictive biomarkers for and toxicities associated with these compounds, as well as identify potential combinatorial strategies to enhance its anti-cancer efficacy.

7.
Cell Cycle ; 13(20): 3302-11, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25485510

RESUMO

Whereas many components regulating the progression from S phase through G2 phase into mitosis have been identified, the mechanism by which these components control this critical cell cycle progression is still not fully elucidated. Cyclin A/Cdk2 has been shown to regulate the timing of Cyclin B/Cdk1 activation and progression into mitosis although the mechanism by which this occurs is only poorly understood. Here we show that depletion of Cyclin A or inhibition of Cdk2 during late S/early G2 phase maintains the G2 phase arrest by reducing Cdh1 transcript and protein levels, thereby stabilizing Claspin and maintaining elevated levels of activated Chk1 which contributes to the G2 phase observed. Interestingly, the Cyclin A/Cdk2 regulated APC/C(Cdh1) activity is selective for only a subset of Cdh1 targets including Claspin. Thus, a normal role for Cyclin A/Cdk2 during early G2 phase is to increase the level of Cdh1 which destabilises Claspin which in turn down regulates Chk1 activation to allow progression into mitosis. This mechanism links S phase exit with G2 phase transit into mitosis, provides a novel insight into the roles of Cyclin A/Cdk2 in G2 phase progression, and identifies a novel role for APC/C(Cdh1) in late S/G2 phase cell cycle progression.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Caderinas/metabolismo , Ciclina A/metabolismo , Quinase 2 Dependente de Ciclina/metabolismo , Fase G2/fisiologia , Fase S/fisiologia , Proteínas Adaptadoras de Transdução de Sinal/genética , Antígenos CD , Caderinas/genética , Ciclina A/genética , Quinase 2 Dependente de Ciclina/genética , Fase G2/genética , Humanos , Fase S/genética
8.
J Invest Dermatol ; 134(1): 150-158, 2014 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-23842115

RESUMO

A hallmark of cancer is genomic instability that is considered to provide the adaptive capacity of cancers to thrive under conditions in which the normal precursors would not survive. Recent genomic analysis has revealed a very high degree of genomic instability in melanomas, although the mechanism by which this instability arises is not known. Here we report that a high proportion (68%) of melanoma cell lines are either partially (40%) or severely (28%) compromised for the G2 phase decatenation checkpoint that normally functions to ensure that the sister chromatids are able to separate correctly during mitosis. The consequence of this loss of checkpoint function is a severely reduced ability to partition the replicated genome in mitosis and thereby increase genomic instability. We also demonstrate that decatenation is dependent on both TopoIIα and ß isoforms. The high incidence of decatenation checkpoint defect is likely to be a major contributor to the high level of genomic instability found in melanomas.


Assuntos
Genes cdc/genética , Instabilidade Genômica/genética , Melanoma/genética , Melanoma/patologia , Neoplasias Cutâneas/genética , Neoplasias Cutâneas/patologia , Pontos de Checagem do Ciclo Celular/genética , Linhagem Celular Tumoral , DNA Topoisomerases Tipo II/genética , Fase G2/genética , Humanos , Mitose/genética , RNA Interferente Pequeno/genética , Troca de Cromátide Irmã/genética
9.
Breast Cancer Res ; 13(2): R36, 2011 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-21457548

RESUMO

INTRODUCTION: Estrogen receptor-negative (ER-) breast cancer is a heterogeneous disease with limited therapeutic options. The molecular apocrine subtype constitutes 50% of ER-tumors and is characterized by overexpression of steroid response genes including androgen receptor (AR). We have recently identified a positive feedback loop between the AR and extracellular signal-regulated kinase (ERK) signaling pathways in the molecular apocrine subtype. In this feedback loop, AR regulates ERK phosphorylation through the mediation of ErbB2 and, in turn, ERK-CREB1 signaling regulates the transcription of AR in molecular apocrine cells. In this study, we investigated the therapeutic implications of the AR-ERK feedback loop in molecular apocrine breast cancer. METHODS: We examined a synergy between the AR inhibitor flutamide and the MEK inhibitor CI-1040 in the molecular apocrine cell lines MDA-MB-453, HCC-1954 and HCC-202 using MTT cell viability and annexin V apoptosis assays. Synergy was measured using the combination index (CI) method. Furthermore, we examined in vivo synergy between flutamide and the MEK inhibitor PD0325901 in a xenograft model of the molecular apocrine subtype. The effects of in vivo therapies on tumor growth, cell proliferation and angiogenesis were assessed. RESULTS: We demonstrate synergistic CI values for combination therapy with flutamide and CI-1040 across three molecular apocrine cell lines at four dose combinations using both cell viability and apoptosis assays. Furthermore, we show in vivo that combination therapy with flutamide and MEK inhibitor PD0325901 has a significantly higher therapeutic efficacy in reducing tumor growth, cellular proliferation and angiogenesis than monotherapy with these agents. Moreover, our data suggested that flutamide and CI-1040 have synergy in trastuzumab resistance models of the molecular apocrine subtype. Notably, the therapeutic effect of combination therapy in trastuzumab-resistant cells was associated with the abrogation of an increased level of ERK phosphorylation that was developed in the process of trastuzumab resistance. CONCLUSIONS: In this study, we demonstrate in vitro and in vivo synergies between AR and MEK inhibitors in molecular apocrine breast cancer. Furthermore, we show that combination therapy with these inhibitors can overcome trastuzumab resistance in molecular apocrine cells. Therefore, a combination therapy strategy with AR and MEK inhibitors may provide an attractive therapeutic option for the ER-/AR+ subtype of breast cancer.


Assuntos
Antagonistas de Receptores de Andrógenos/farmacologia , Protocolos de Quimioterapia Combinada Antineoplásica/farmacologia , Benzamidas/farmacologia , Neoplasias da Mama/tratamento farmacológico , Neoplasias da Mama/metabolismo , Flutamida/farmacologia , Quinases de Proteína Quinase Ativadas por Mitógeno/antagonistas & inibidores , Animais , Anticorpos Monoclonais Humanizados/farmacologia , Apoptose/efeitos dos fármacos , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Difenilamina/análogos & derivados , Difenilamina/farmacologia , Resistencia a Medicamentos Antineoplásicos , Sinergismo Farmacológico , Feminino , Humanos , Camundongos , Quinases de Proteína Quinase Ativadas por Mitógeno/metabolismo , Fosforilação , Receptor ErbB-2/antagonistas & inibidores , Receptor ErbB-2/metabolismo , Receptores Androgênicos/metabolismo , Receptores de Estrogênio/metabolismo , Transdução de Sinais , Trastuzumab , Ensaios Antitumorais Modelo de Xenoenxerto
10.
Neoplasia ; 13(2): 154-66, 2011 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-21403841

RESUMO

Estrogen receptor (ER)-negative breast cancer is heterogeneous, and the biology of this disease has remained poorly understood. Molecular apocrine is a subtype of ER-negative breast cancer that is characterized by the overexpression of steroid-response genes such as AR and a high rate of ErbB2 amplification. In this study, we have identified a positive feedback loop between the AR and extracellular signal-regulated kinase (ERK) signaling pathways in molecular apocrine breast cancer. In this process, AR regulates ERK phosphorylation and kinase activity. In addition, AR inhibition results in the down-regulation of ERK target proteins phospho-RSK1, phospho-Elk-1, and c-Fos using an in vivo molecular apocrine model. Furthermore, we show that AR-mediated induction of ERK requires ErbB2, and AR activity, in turn, regulates ErbB2 expression as an AR target gene. These findings suggest that ErbB2 is an upstream connector between the AR and ERK signaling pathways. Another feature of this feedback loop is an ERK-mediated regulation of AR. In this respect, the inhibition of ERK phosphorylation reduces AR expression and CREB1-mediated transcriptional regulation of AR acts as a downstream connector between the AR and ERK signaling pathways in molecular apocrine cells. Finally, we demonstrate that AR-positive staining is associated with the overexpression of ERK signaling targets phospho-Elk-1 and c-Fos in ER-negative breast tumors, which further supports a cross-regulation between the AR and ERK signaling pathways in molecular apocrine subtype. This study demonstrates an AR-ERK feedback loop in ER-negative breast cancer with significant biologic and therapeutic implications in this disease.


Assuntos
Neoplasias da Mama/metabolismo , MAP Quinases Reguladas por Sinal Extracelular/metabolismo , Receptores Androgênicos/metabolismo , Receptores de Estrogênio/metabolismo , Animais , Neoplasias da Mama/genética , Linhagem Celular Tumoral , Proliferação de Células , MAP Quinases Reguladas por Sinal Extracelular/genética , Retroalimentação Fisiológica , Feminino , Regulação Neoplásica da Expressão Gênica , Humanos , Camundongos , Fosforilação , Receptor ErbB-2/genética , Receptor ErbB-2/metabolismo , Receptores Androgênicos/genética , Receptores de Estrogênio/genética , Transdução de Sinais
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...