Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Curr Biol ; 22(12): 1095-101, 2012 Jun 19.
Artigo em Inglês | MEDLINE | ID: mdl-22608508

RESUMO

Life cycle adaptation to latitudinal and seasonal variation in photoperiod and temperature is a major determinant of evolutionary success in flowering plants. Whereas the life cycle of the dicotyledonous model species Arabidopsis thaliana is controlled by two epistatic genes, FLOWERING LOCUS C and FRIGIDA, three unrelated loci (VERNALIZATION) determine the spring and winter habits of monocotyledonous plants such as temperate cereals. In the core eudicot species Beta vulgaris, whose lineage diverged from that leading to Arabidopsis shortly after the monocot-dicot split 140 million years ago, the bolting locus B is a master switch distinguishing annuals from biennials. Here, we isolated B and show that the pseudo-response regulator gene BOLTING TIME CONTROL 1 (BvBTC1), through regulation of the FLOWERING LOCUS T genes, is absolutely necessary for flowering and mediates the response to both long days and vernalization. Our results suggest that domestication of beets involved the selection of a rare partial loss-of-function BvBTC1 allele that imparts reduced sensitivity to photoperiod that is restored by vernalization, thus conferring bienniality, and illustrate how evolutionary plasticity at a key regulatory point can enable new life cycle strategies.


Assuntos
Adaptação Biológica/fisiologia , Agricultura/métodos , Beta vulgaris/fisiologia , Evolução Biológica , Flores/fisiologia , Genes Reguladores/genética , Proteínas de Plantas/genética , Adaptação Biológica/genética , Sequência de Aminoácidos , Análise do Polimorfismo de Comprimento de Fragmentos Amplificados , Sequência de Bases , Beta vulgaris/genética , Mapeamento Cromossômico , Cromossomos Artificiais Bacterianos/genética , Clonagem Molecular , Primers do DNA/genética , Flores/genética , Marcadores Genéticos/genética , Haplótipos/genética , Immunoblotting , Modelos Biológicos , Dados de Sequência Molecular , Fenótipo , Fotoperíodo , Filogenia , Estações do Ano , Seleção Genética , Alinhamento de Sequência , Análise de Sequência de DNA
2.
J Exp Bot ; 56(415): 1285-96, 2005 May.
Artigo em Inglês | MEDLINE | ID: mdl-15767324

RESUMO

In this study it is shown that at least 10% of the major storage product of developing embryos of Brassica napus (L.), triacylglycerol, is lost during the desiccation phase of seed development. The metabolism of this lipid was studied by measurements of the fate of label from [1-(14)C]decanoate supplied to isolated embryos, and by measurements of the activities of enzymes of fatty acid catabolism. Measurements on desiccating embryos have been compared with those made on embryos during lipid accumulation and on germinating seedlings. Enzymes of beta-oxidation and the glyoxylate cycle, and phosphoenolpyruvate carboxykinase were present in embryos during oil accumulation, and increased in activity and abundance as the seeds matured and became desiccated. Although the activities were less than those measured during germination, they were at least comparable to the in vivo rate of fatty acid synthesis in the embryo during development. The pattern of labelling, following metabolism of decanoate by isolated embryos, indicated a much greater involvement of the glyoxylate cycle during desiccation than earlier in oil accumulation, and showed that much of the (14)C-label from decanoate was released as CO(2) at both stages. Sucrose was not a product of decanoate metabolism during embryo development, and therefore lipid degradation was not associated with net gluconeogenic activity. These observations are discussed in the context of seed development, oil yield, and the synthesis of novel fatty acids in plants.


Assuntos
Brassica napus/embriologia , Óleos de Plantas/metabolismo , Brassica napus/crescimento & desenvolvimento , Metabolismo dos Carboidratos , Radioisótopos de Carbono/metabolismo , Ácidos Decanoicos/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...