Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Genes Dis ; 9(3): 797-806, 2022 May.
Artigo em Inglês | MEDLINE | ID: mdl-35782986

RESUMO

Human idiopathic hypercalciuria (IH) is the most common cause of calcium oxalate nephrolithiasis with perturbed calcium metabolism with increased bone resorption and decreased renal calcium reabsorption, which can be phenotype-copied in the genetic hypercalciuric stone-forming (GHS) rat model. We previously demonstrated that high VDR expression plays important roles in the development of hypercalciuria in the GHS rats. However, the underlying mechanism through which VDR impact hypercalciuria development remains to be fully understood. Here, we sought to determine how VDR regulated its target genes that are implicated in calcium homeostasis and potentially hypercalciuria. We found that VDR expression in the GHS rats was elevated in the calcium transporting tissues, as well as in the thymus and prostate, but not in lung, brain, heart, liver and spleen, when compared with control SD rats. Snail expression in the GHS rats was significantly downregulated in kidney, intestine, thymus and testis. Intraperitoneal injection of 1,25(OH)2D3 significantly upregulated the expression of renal calcium sensing receptor (CaSR), intestinal calcium transporters transient receptor potential vanilloid type 6 (TRPV6), and VDR in GHS rats, compared with that in control SD rats. ChIP assays revealed that VDR specifically bound to the proximal promoters of target genes, followed by histone H3 hyperacetylation or hypermethylation. Collectively, our results suggest that elevated VDR expression may contribute to the development of hypercalciuria by sensitizing VDR target genes to 1,25(OH)2D3 through histone modifications at their promoter regions in a genetic hypercalciuric stone-forming (GHS) rat model.

2.
Cell Death Dis ; 11(5): 372, 2020 05 15.
Artigo em Inglês | MEDLINE | ID: mdl-32415085

RESUMO

Osteogenesis (OS) is a type of differentiation that is of great importance for bone homeostasis. Increasing studies suggest circular RNAs (circRNAs) as pivotal regulators in OS. This study proposed to investigate mechanism mediated by circRNAs in OS. Based on GEO data and qRT-PCR assay, we found that circ-DAB1 (has_circ_0113689) was significantly up-regulated during osteogenic differentiation in human BMSCs. Overexpressing circ-DAB1 proliferation and osteogenic differentiation of BMSCs, whereas silencing circ-DAB1 elicited opposite functions. Subsequently, recombination signal-binding protein for immunoglobulin kappa J region (RBPJ), an important transcription factor in NOTCH pathway, was found to interact with DAB1 promoter while not to combine with circ-DAB1. Interestingly, circ-DAB1 overexpression could result in the increasing binding between RBPJ and DAB adaptor protein 1 (DAB1) promoter. Overexpressing circ-DAB1 upregulated RBPJ in BMSCs to induce DAB1 level. Further, we uncovered that circ-DAB1 upregulated RBPJ through sequestering miR-1270 and miR-944. Restoration experiments demonstrated that knocking down either RBPJ or DAB1 partially recovered BMSC proliferation and osteogenic differentiation that was suppressed by circ-DAB1 overexpression. Conclusively, circ-DAB1 promotes cell proliferation and osteogenic differentiation of BMSCs via NOTCH/RBPJ pathway.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Proliferação de Células/genética , Proteínas do Tecido Nervoso/metabolismo , Osteogênese/genética , RNA Circular/metabolismo , Diferenciação Celular/genética , Diferenciação Celular/fisiologia , Proliferação de Células/fisiologia , Humanos , Proteína de Ligação a Sequências Sinal de Recombinação J de Imunoglobina/metabolismo , Células-Tronco Mesenquimais/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...