Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Biochem Pharmacol ; 85(1): 92-100, 2013 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-23085266

RESUMO

Reactive oxygen species (ROS) production by the neutrophil NADPH oxidase plays a key role in host defense against pathogens, such as bacteria and fungi. Zymosan a cell-wall preparation from Saccharomyces cerevisiae is largely used to activate neutrophils in its opsonized form. In this study, we show that non-opsonized zymosan alone induced ROS production by human neutrophils. Zymosan-induced ROS production is higher than the formyl-methionyl-leucyl-phenylalanine (fMLF)- or the phorbol myristate acetate (PMA)-induced ROS production but is lower than the one induced by opsonized zymosan. Most of the zymosan-induced ROS production is intracellular. Interestingly, zymosan induced the phosphorylation of the NADPH oxidase cytosolic component p47phox on several sites which are Ser315, Ser328 and Ser345. Zymosan induced also the activation of the small G-protein Rac2. Phosphorylation of the p47phox as well as Rac2 activation were inhibited by genistein a broad range protein tyrosine kinase inhibitor and by wortmannin a PI3Kinase inhibitor. GF109203X a PKC inhibitor inhibited phosphorylation of p47phox on Ser315 and Ser328. SB203580 and UO126, inhibitors of p38MAPK and ERK1/2-pathway, respectively, inhibited phosphorylation of p47phox on Ser345. Zymosan-induced ROS production was completely inhibited by genistein and wortmannin and partially inhibited by SB203580, UO126 and GF109203X. These results show that zymosan alone is able to activate NADPH oxidase in human neutrophils via the phosphorylation of p47phox and Rac2 activation and that a protein tyrosine kinase, PI3Kinase, p38MAPK, ERK1/2 and PKC are involved in this process. These pathways could be potential pharmacological targets to treat zymosan- and S. cerevisiae-induced inflammation.


Assuntos
Proteínas Quinases Ativadas por Mitógeno/metabolismo , NADPH Oxidases/metabolismo , Neutrófilos/efeitos dos fármacos , Fosfatidilinositol 3-Quinases/metabolismo , Proteína Quinase C/metabolismo , Proteínas Tirosina Quinases/metabolismo , Zimosan/farmacologia , Proteínas rac de Ligação ao GTP/metabolismo , Ativação Enzimática , Humanos , Técnicas In Vitro , Proteína Quinase 1 Ativada por Mitógeno/metabolismo , Proteína Quinase 3 Ativada por Mitógeno/metabolismo , Neutrófilos/metabolismo , Fosforilação , Espécies Reativas de Oxigênio/metabolismo , Proteínas Quinases p38 Ativadas por Mitógeno/metabolismo , Proteína RAC2 de Ligação ao GTP
2.
FASEB J ; 20(9): 1504-6, 2006 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-16720733

RESUMO

Interleukin-10 (IL-10) exerts its anti-inflammatory properties by down-regulating polymorphonuclear neutrophil (PMN) functions such as reactive oxygen species (ROS) production via NADPH oxidase. The molecular mechanisms underlying this process are unclear. Partial phosphorylation of the NADPH oxidase cytosolic component p47(PHOX) induced by proinflammatory cytokines, such as granulocyte-macrophage colony stimulating factor (GM-CSF) and tumor necrosis factor (TNF)-alpha, is essential for priming ROS production by PMN. The aim of this study was to determine whether IL-10 inhibits GM-CSF- and TNFalpha-induced p47(PHOX) phosphorylation and to investigate the molecular mechanisms involved in this effect. We found that IL-10 selectively inhibited GM-CSF- but not TNFalpha-induced p47PHOX phosphorylation in a concentration-dependent manner. As GM-CSF-induced p47PHOX phosphorylation is mediated by extracellular signal-regulated kinase 1/2 (ERK1/2), we tested the effect of IL-10 on this pathway. We found that IL-10 inhibited GM-CSF-induced ERK1/2 activity in an immunocomplex kinase assay. This inhibitory effect was confirmed by analyzing the phosphorylation status of the endogenous substrate of ERK1/2, p90RSK, in intact PMN. Furthermore, IL-10 decreased ROS production by adherent GM-CSF-treated PMN in keeping with the higher ROS production observed in whole blood from IL-10 knockout mice compared to their wild-type counterparts. Together, these results suggest that IL-10 inhibits GM-CSF-induced priming of ROS production by inhibiting p47PHOX phosphorylation through a decrease in ERK1/2 activity. This IL-10 effect could contribute to the tight regulation of NADPH oxidase activity at the inflammatory site.


Assuntos
Fator Estimulador de Colônias de Granulócitos e Macrófagos/farmacologia , Interleucina-10/farmacologia , NADPH Oxidases/metabolismo , Neutrófilos/fisiologia , Explosão Respiratória/fisiologia , Fator Estimulador de Colônias de Granulócitos e Macrófagos/antagonistas & inibidores , Humanos , Proteína Quinase 1 Ativada por Mitógeno/metabolismo , Proteína Quinase 3 Ativada por Mitógeno/metabolismo , NADPH Oxidases/efeitos dos fármacos , Neutrófilos/efeitos dos fármacos , Fosforilação , Explosão Respiratória/efeitos dos fármacos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...