Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
PLoS Genet ; 20(9): e1011402, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-39264953

RESUMO

Nucleotide-binding domain and leucine-rich repeat (NLR) proteins play crucial roles in immunity against pathogens in both animals and plants. In solanaceous plants, activation of several sensor NLRs triggers their helper NLRs, known as NLR-required for cell death (NRC), to form resistosome complexes to initiate immune responses. While the sensor NLRs and downstream NRC helpers display diverse genetic compatibility, molecular evolutionary events leading to the complex network architecture remained elusive. Here, we showed that solanaceous NRC3 variants underwent subfunctionalization after the divergence of Solanum and Nicotiana, altering the genetic architecture of the NRC network in Nicotiana. Natural solanaceous NRC3 variants form three allelic groups displaying distinct compatibilities with the sensor NLR Rpi-blb2. Ancestral sequence reconstruction and analyses of natural and chimeric variants identified six key amino acids involved in sensor-helper compatibility. These residues are positioned on multiple surfaces of the resting NRC3 homodimer, collectively contributing to their compatibility with Rpi-blb2. Upon activation, Rpi-blb2-compatible NRC3 variants form membrane-associated punctate and high molecular weight complexes, and confer resistance to the late blight pathogen Phytophthora infestans. Our findings revealed how mutations in NRC alleles lead to subfunctionalization, altering sensor-helper compatibility and contributing to the increased complexity of the NRC network.


Assuntos
Proteínas NLR , Nicotiana , Proteínas de Plantas , Nicotiana/genética , Proteínas NLR/genética , Proteínas NLR/metabolismo , Proteínas NLR/química , Proteínas de Plantas/genética , Solanum/genética , Doenças das Plantas/genética , Doenças das Plantas/microbiologia , Doenças das Plantas/imunologia , Evolução Molecular , Imunidade Vegetal/genética , Resistência à Doença/genética , Phytophthora infestans/patogenicidade , Phytophthora infestans/genética , Alelos
2.
New Phytol ; 244(1): 318-331, 2024 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-39081031

RESUMO

Chemical-inducible gene expression systems are commonly used to regulate gene expression for functional genomics in various plant species. However, a convenient system that can tightly regulate transgene expression in Nicotiana benthamiana is still lacking. In this study, we developed a tightly regulated copper-inducible system that can control transgene expression and conduct cell death assays in N. benthamiana. We tested several chemical-inducible systems using Agrobacterium-mediated transient expression and found that the copper-inducible system exhibited the least concerns regarding leakiness in N. benthamiana. Although the copper-inducible system can control the expression of some tested reporters, it is not sufficiently tight to regulate certain tested hypersensitive cell death responses. Using the MoClo-based synthetic biology approach, we incorporated the suicide exon HyP5SM/OsL5 and Cre/LoxP as additional regulatory elements to enhance the tightness of the regulation. This new design allowed us to tightly control the hypersensitive cell death induced by several tested leucine-rich repeat-containing proteins and their matching avirulence factors, and it can be easily applied to regulate the expression of other transgenes in transient expression assays. Our findings offer new approaches for both fundamental and translational studies in plant functional genomics.


Assuntos
Morte Celular , Cobre , Éxons , Regulação da Expressão Gênica de Plantas , Integrases , Nicotiana , Plantas Geneticamente Modificadas , Transgenes , Nicotiana/genética , Nicotiana/efeitos dos fármacos , Integrases/metabolismo , Éxons/genética , Regulação da Expressão Gênica de Plantas/efeitos dos fármacos , Cobre/farmacologia , Cobre/toxicidade , Morte Celular/efeitos dos fármacos , Morte Celular/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA