Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
2.
NPJ Vaccines ; 6(1): 36, 2021 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-33723260

RESUMO

T cells are important for controlling ovarian cancer (OC). We previously demonstrated that combinatorial use of a personalized whole-tumor lysate-pulsed dendritic cell vaccine (OCDC), bevacizumab (Bev), and cyclophosphamide (Cy) elicited neoantigen-specific T cells and prolonged OC survival. Here, we hypothesize that adding acetylsalicylic acid (ASA) and low-dose interleukin (IL)-2 would increase the vaccine efficacy in a recurrent advanced OC phase I trial (NCT01132014). By adding ASA and low-dose IL-2 to the OCDC-Bev-Cy combinatorial regimen, we elicited vaccine-specific T-cell responses that positively correlated with patients' prolonged time-to-progression and overall survival. In the ID8 ovarian model, animals receiving the same regimen showed prolonged survival, increased tumor-infiltrating perforin-producing T cells, increased neoantigen-specific CD8+ T cells, and reduced endothelial Fas ligand expression and tumor-infiltrating T-regulatory cells. This combinatorial strategy was efficacious and also highlighted the predictive value of the ID8 model for future ovarian trial development.

3.
J Immunother Cancer ; 8(2)2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-32817208

RESUMO

BACKGROUND: Novel therapeutic strategies in ovarian cancer (OC) are needed as the survival rate remains dismally low. Although dendritic cell-based cancer vaccines are effective in eliciting therapeutic responses, their complex and costly manufacturing process hampers their full clinical utility outside specialized clinics. Here, we describe a novel approach of generating a rapid and effective cancer vaccine using ascites-derived monocytes for treating OC. METHODS: Using the ID8 mouse ovarian tumor model and OC patient samples, we isolated ascites monocytes and evaluated them with flow cytometry, Luminex cytokine and chemokine array analysis, ex vivo cocultures with T cells, in vivo tumor challenge and T cell transfer experiments, RNA-sequencing and mass spectrometry. RESULTS: We demonstrated the feasibility of isolating ascites monocytes and restoring their ability to function as bona fide antigen-presenting cells (APCs) with Toll-like receptor (TLR) 4 lipopolysaccharide and TLR9 CpG-oligonucleotides, and a blocking antibody to interleukin-10 receptor (IL-10R Ab) in the ID8 model. The ascites monocytes were laden with tumor antigens at a steady state in vivo. After a short 48 hours activation, they upregulated maturation markers (CD80, CD86 and MHC class I) and demonstrated strong ex vivo T cell stimulatory potential and effectively suppressed tumor and malignant ascites in vivo. They also induced protective long-term T cell memory responses. To evaluate the translational potential of this approach, we isolated ascites monocytes from stage III/IV chemotherapy-naïve OC patients. Similarly, the human ascites monocytes presented tumor-associated antigens (TAAs), including MUC1, ERBB2, mesothelin, MAGE, PRAME, GPC3, PMEL and TP53 at a steady state. After a 48-hour treatment with TLR4 and IL-10R Ab, they efficiently stimulated oligoclonal tumor-associated lymphocytes (TALs) with strong reactivity against TAAs. Importantly, the activated ascites monocytes retained their ability to activate TALs in the presence of ascitic fluid. CONCLUSIONS: Ascites monocytes are naturally loaded with tumor antigen and can perform as potent APCs following short ex vivo activation. This novel ascites APC vaccine can be rapidly prepared in 48 hours with a straightforward and affordable manufacturing process, and would be an attractive therapeutic vaccine for OC.


Assuntos
Ascite/fisiopatologia , Vacinas Anticâncer/imunologia , Monócitos/metabolismo , Neoplasias Ovarianas/imunologia , Receptores Toll-Like/imunologia , Animais , Feminino , Humanos , Mesotelina , Camundongos , Neoplasias Ovarianas/mortalidade , Análise de Sobrevida
4.
J Transl Med ; 9: 198, 2011 Nov 14.
Artigo em Inglês | MEDLINE | ID: mdl-22082029

RESUMO

BACKGROUND: Dendritic cells (DCs) are the most potent antigen-presenting cell population for activating tumor-specific T cells. Due to the wide range of methods for generating DCs, there is no common protocol or defined set of criteria to validate the immunogenicity and function of DC vaccines. METHODS: Monocyte-derived DCs were generated during 4 days of culture with recombinant granulocyte-macrophage colony stimulating factor and interleukin-4, and pulsed with tumor lysate produced by hypochlorous acid oxidation of tumor cells. Different culture parameters for clinical-scale DC preparation were investigated, including: 1) culture media; 2) culture surface; 3) duration of activating DCs with lipopolysaccharide (LPS) and interferon (IFN)-gamma; 4) method of DC harvest; and 5) cryomedia and final DC product formulation. RESULTS: DCs cultured in CellGenix DC media containing 2% human AB serum expressed higher levels of maturation markers following lysate-loading and maturation compared to culturing with serum-free CellGenix DC media or AIM-V media, or 2% AB serum supplemented AIM-V media. Nunclon™Δ surface, but not Corning(®) tissue-culture treated surface and Corning(®) ultra-low attachment surface, were suitable for generating an optimal DC phenotype. Recombinant trypsin resulted in reduced major histocompatibility complex (MHC) Class I and II expression on mature lysate-loaded DCs, however presentation of MHC Class I peptides by DCs was not impaired and cell viability was higher compared to cell scraping. Preservation of DCs with an infusible cryomedia containing Plasma-Lyte A, dextrose, sodium chloride injection, human serum albumin, and DMSO yielded higher cell viability compared to using human AB serum containing 10% DMSO. Finally, activating DCs for 16 hours with LPS and IFN-γ stimulated robust mixed leukocyte reactions (MLRs), and high IL-12p70 production in vitro that continued for 24 hours after the cryopreserved DCs were thawed and replated in fresh media. CONCLUSIONS: This study examined criteria including DC phenotype, viability, IL-12p70 production and the ability to stimulate MLR as metrics of whole oxidized tumor lysate-pulsed DC immunogenicity and functionality. Development and optimization of this unique method is now being tested in a clinical trial of autologous oxidized tumor lysate-pulsed DC in clinical-scale in recurrent ovarian, primary peritoneal or fallopian tube cancer (NCT01132014).


Assuntos
Técnicas de Cultura de Células/métodos , Extratos Celulares/farmacologia , Células Dendríticas/citologia , Células Dendríticas/metabolismo , Interleucina-12/metabolismo , Diferenciação Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Criopreservação , Meios de Cultura/farmacologia , Células Dendríticas/efeitos dos fármacos , Humanos , Ácido Hipocloroso/farmacologia , Interleucina-12/biossíntese , Teste de Cultura Mista de Linfócitos , Oxirredução/efeitos dos fármacos , Fenótipo , Fatores de Tempo , Tripsina/metabolismo
5.
J Immunol ; 184(2): 824-35, 2010 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-20018624

RESUMO

The production of hypochlorous acid (HOCl) is a characteristic of granulocyte activation, a hallmark of the early phase of innate immune responses. In this study, we show that, in addition to its well-established role as a microbicide, HOCl can act as a natural adjuvant of adaptive immunity. HOCl enhances the T cell responses to the model Ag OVA, facilitating the processing and presentation of this protein via the class II MHC pathway. HOCl modification also enhances cross-presentation of the tumor Ag tyrosinase-related protein 2 via class I MHC. The adjuvant effects of HOCl are independent of TLR signaling. The enhanced presentation of HOCl-modified OVA is mediated via modification of the N-linked carbohydrate side chain rather than formation of protein aldehydes or chloramines. HOCl-modified OVA is taken up more efficiently by APCs and is degraded more efficiently by proteinases. Atomic force microscopy demonstrated that enhanced uptake is mediated via specific receptor binding, one candidate for which is the scavenger receptor lectin-like oxidized low-density lipoprotein receptor, which shows enhanced binding to chlorinated OVA. A function of HOCl is therefore to target glycoprotein Ags to scavenger receptors on the APC surface. This additional mechanism linking innate and adaptive immunity suggests novel strategies to enhance immunity to vaccines.


Assuntos
Imunidade Adaptativa , Apresentação de Antígeno , Apresentação Cruzada , Ácido Hipocloroso/farmacologia , Imunidade Adaptativa/efeitos dos fármacos , Adjuvantes Imunológicos/farmacologia , Animais , Apresentação de Antígeno/efeitos dos fármacos , Células Apresentadoras de Antígenos/imunologia , Apresentação Cruzada/efeitos dos fármacos , Granulócitos , Antígenos de Histocompatibilidade Classe II , Imunidade Inata , Camundongos , Ovalbumina/imunologia , Receptores de LDL/metabolismo , Linfócitos T/imunologia
6.
Clin Cancer Res ; 14(15): 4898-907, 2008 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-18676764

RESUMO

PURPOSE: Hypochlorous acid, a product of neutrophil myeloperoxidase, is a powerful enhancer of antigen processing and presentation. In this study, we examine whether ovarian epithelial cells (SK-OV-3) exposed to hypochlorous acid can stimulate T cells from patients with ovarian epithelial cancer that recognize common tumor antigens as well as autologous tumor. EXPERIMENTAL DESIGN: T cells from human leukocyte antigen (HLA)-A2(+) and HLA-A2(-) patients or healthy controls were stimulated with autologous dendritic cells cocultured with the generic ovarian tumor line SK-OV-3, previously exposed to hypochlorous acid. RESULTS: Hypochlorous acid-treated SK-OV-3 cells drove expansion of CD8(+) T cells from HLA-A2(+) individuals, which recognized the HLA-A2-restricted tumor antigen epitopes of HER-2/neu (E75 and GP2) and MUC1 (M1.1 and M1.2). Up to 4.1% of the T cells were positive for the HER-2/neu KIFGSLAFL epitope using pentamer staining. Dendritic cells loaded with oxidized SK-OV-3 cells and further matured with CD40 agonistic antibody or monophosphoryl lipid A additionally induced CD4(+) class II-restricted responses. Critically, T cells stimulated with mature oxidized SK-OV-3 (but not a control oxidized melanoma cell line) directly recognized autologous tumor cells isolated from patient ascites. CONCLUSIONS: Immunization with mature dendritic cells loaded with a generic oxidized tumor cell line stimulates a polyclonal antitumor response that recognizes autologous tumor. These findings suggest a new immunotherapeutic strategy to extend remission in ovarian cancer.


Assuntos
Linfócitos T CD8-Positivos/metabolismo , Ácido Hipocloroso/farmacologia , Neoplasias Epiteliais e Glandulares/metabolismo , Neoplasias Ovarianas/metabolismo , Oxigênio/metabolismo , Idoso , Antígenos CD40/biossíntese , Células Dendríticas/citologia , Células Dendríticas/metabolismo , Feminino , Antígeno HLA-A2/metabolismo , Humanos , Leucócitos Mononucleares/citologia , Pessoa de Meia-Idade , Modelos Biológicos , Oxidantes/farmacologia , Oxigênio/química
7.
Cancer Immunol Immunother ; 55(11): 1384-95, 2006 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-16463039

RESUMO

BACKGROUND: Ovarian cancer commonly relapses after remission and new strategies to target microscopic residual diseases are required. One approach is to activate tumor-specific cytotoxic T cells with dendritic cells loaded with tumor cells. In order to enhance their immunogenicity, ovarian tumor cells (SK-OV-3, which express two well-characterized antigens HER-2/neu and MUC-1) were killed by oxidation with hypochlorous acid (HOCl). RESULTS: Treatment for 1 h with 60 microM HOCl was found to induce necrosis in all SK-OV-3 cells. Oxidized, but not live, SK-OV-3 was rapidly taken up by monocyte-derived dendritic cells, and induced partial dendritic cell maturation. Dendritic cells cultured from HLA-A2 healthy volunteers were loaded with oxidized SK-OV-3 (HLA-A2-) and co-cultured with autologous T cells. Responding T cells were tested for specificity after a further round of antigen stimulation. In ELISPOT assays, T cells produced interferon-gamma (IFN-gamma) in response to the immunizing cellular antigen, and also to peptides coding for MUC-1 and HER-2/neu HLA-A2 restricted epitopes, demonstrating efficient cross-presentation of cell-associated antigens. In contrast, no responses were seen after priming with heat-killed or HCl-killed SK-OV-3, indicating that HOCl oxidation and not cell death/necrosis per se enhanced the immunogenicity of SK-OV-3. Finally, T cells stimulated with oxidized SK-OV-3 showed no cross-reaction to oxidized melanoma cells, nor vice versa, demonstrating that the response was tumor-type specific. CONCLUSIONS: Immunization with oxidized ovarian tumor cell lines may represent an improved therapeutic strategy to stimulate a polyclonal anti-tumor cellular immune response and hence extend remission in ovarian cancer.


Assuntos
Células Dendríticas/citologia , Ácido Hipocloroso/farmacologia , Imunoterapia/métodos , Neoplasias Ovarianas/patologia , Linhagem Celular Tumoral , Citotoxicidade Imunológica , Feminino , Humanos , Ácido Hipocloroso/metabolismo , Interferon gama/metabolismo , Neoplasias Ovarianas/metabolismo , Oxigênio/metabolismo , Peptídeos/química , Linfócitos T/citologia , Transplante Homólogo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...