Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sensors (Basel) ; 22(24)2022 Dec 07.
Artigo em Inglês | MEDLINE | ID: mdl-36559969

RESUMO

The precision modelling of intrinsic camera geometry is a common issue in the fields of photogrammetry (PH) and computer vision (CV). However, in both fields, intrinsic camera geometry has been modelled differently, which has led researchers to adopt different definitions of intrinsic camera parameters (ICPs), including focal length, principal point, radial distortion, decentring distortion, affinity and shear. These ICPs are indispensable for vision-based measurements. These differences can confuse researchers from one field when using ICPs obtained from a camera calibration software package developed in another field. This paper clarifies the ICP definitions used in each field and proposes an ICP transformation algorithm. The originality of this study lies in its use of least-squares adjustment, applying the image points involving ICPs defined in PH and CV image frames to convert a complete set of ICPs. This ICP transformation method is more rigorous than the simplified formulas used in conventional methods. Selecting suitable image points can increase the accuracy of the generated adjustment model. In addition, the proposed ICP transformation method enables users to apply mixed software in the fields of PH and CV. To validate the transformation algorithm, two cameras with different view angles were calibrated using typical camera calibration software packages applied in each field to obtain ICPs. Experimental results demonstrate that our proposed transformation algorithm can be used to convert ICPs derived from different software packages. Both the PH-to-CV and CV-to-PH transformation processes were executed using complete mathematical camera models. We also compared the rectified images and distortion plots generated using different ICPs. Furthermore, by comparing our method with the state of art method, we confirm the performance improvement of ICP conversions between PH and CV models.


Assuntos
Algoritmos , Software , Computadores , Simulação por Computador , Fotogrametria/métodos
2.
Sensors (Basel) ; 19(23)2019 Nov 29.
Artigo em Inglês | MEDLINE | ID: mdl-31795405

RESUMO

Global navigation satellite systems (GNSSs) are commonly used for navigation and mapping applications. However, in GNSS-hostile environments, where the GNSS signal is noisy or blocked, the navigation information provided by a GNSS is inaccurate or unavailable. To overcome these issues, this study proposed a real-time visual odometry (VO)/GNSS integrated navigation system. An on-line smoothing method based on the extended Kalman filter (EKF) and the Rauch-Tung-Striebel (RTS) smoother was proposed. VO error modelling was also proposed to estimate the VO error and compensate the incoming measurements. Field tests were performed in various GNSS-hostile environments, including under a tree canopy and an urban area. An analysis of the test results indicates that with the EKF used for data fusion, the root-mean-square error (RMSE) of the three-dimensional position is about 80 times lower than that of the VO-only solution. The on-line smoothing and error modelling made the results more accurate, allowing seamless on-line navigation information. The efficiency of the proposed methods in terms of cost and accuracy compared to the conventional inertial navigation system (INS)/GNSS integrated system was demonstrated.

3.
Sensors (Basel) ; 15(10): 25039-54, 2015 Sep 29.
Artigo em Inglês | MEDLINE | ID: mdl-26426019

RESUMO

The integration of the Strapdown Inertial Navigation System and Global Navigation Satellite System (SINS/GNSS) has been implemented for land-based gravimetry and has been proven to perform well in estimating gravity. Based on the mGal-level gravimetry results, this research aims to construct and develop a land-based SINS/GNSS gravimetry device containing a navigation-grade Inertial Measurement Unit. This research also presents a feasibility analysis for groundwater resource detection. A preliminary comparison of the kinematic velocities and accelerations using multi-combination of GNSS data including Global Positioning System, Global Navigation Satellite System, and BeiDou Navigation Satellite System, indicates that three-system observations performed better than two-system data in the computation. A comparison of gravity derived from SINS/GNSS and measured using a relative gravimeter also shows that both agree reasonably well with a mean difference of 2.30 mGal. The mean difference between repeat measurements of gravity disturbance using SINS/GNSS is 2.46 mGal with a standard deviation of 1.32 mGal. The gravity variation because of the groundwater at Pingtung Plain, Taiwan could reach 2.72 mGal. Hence, the developed land-based SINS/GNSS gravimetry can sufficiently and effectively detect groundwater resources.

4.
Sensors (Basel) ; 15(3): 6560-85, 2015 Mar 19.
Artigo em Inglês | MEDLINE | ID: mdl-25808764

RESUMO

Spatial information plays a critical role in remote sensing and mapping applications such as environment surveying and disaster monitoring. An Unmanned Aerial Vehicle (UAV)-borne mobile mapping system (MMS) can accomplish rapid spatial information acquisition under limited sky conditions with better mobility and flexibility than other means. This study proposes a long endurance Direct Geo-referencing (DG)-based fixed-wing UAV photogrammetric platform and two DG modules that each use different commercial Micro-Electro Mechanical Systems' (MEMS) tactical grade Inertial Measurement Units (IMUs). Furthermore, this study develops a novel kinematic calibration method which includes lever arms, boresight angles and camera shutter delay to improve positioning accuracy. The new calibration method is then compared with the traditional calibration approach. The results show that the accuracy of the DG can be significantly improved by flying at a lower altitude using the new higher specification hardware. The new proposed method improves the accuracy of DG by about 20%. The preliminary results show that two-dimensional (2D) horizontal DG positioning accuracy is around 5.8 m at a flight height of 300 m using the newly designed tactical grade integrated Positioning and Orientation System (POS). The positioning accuracy in three-dimensions (3D) is less than 8 m.

5.
Sensors (Basel) ; 16(1)2015 Dec 28.
Artigo em Inglês | MEDLINE | ID: mdl-26729114

RESUMO

Hardware sensors embedded in a smartphone allow the device to become an excellent mobile navigator. A smartphone is ideal for this task because its great international popularity has led to increased phone power and since most of the necessary infrastructure is already in place. However, using a smartphone for indoor pedestrian navigation can be problematic due to the low accuracy of sensors, imprecise predictability of pedestrian motion, and inaccessibility of the Global Navigation Satellite System (GNSS) in some indoor environments. Pedestrian Dead Reckoning (PDR) is one of the most common technologies used for pedestrian navigation, but in its present form, various errors tend to accumulate. This study introduces a fuzzy decision tree (FDT) aided by map information to improve the accuracy and stability of PDR with less dependency on infrastructure. First, the map is quickly surveyed by the Indoor Mobile Mapping System (IMMS). Next, Bluetooth beacons are implemented to enable the initializing of any position. Finally, map-aided FDT can estimate navigation solutions in real time. The experiments were conducted in different fields using a variety of smartphones and users in order to verify stability. The contrast PDR system demonstrates low stability for each case without pre-calibration and post-processing, but the proposed low-complexity FDT algorithm shows good stability and accuracy under the same conditions.

6.
Sensors (Basel) ; 13(8): 10599-622, 2013 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-23955434

RESUMO

The integration of an Inertial Navigation System (INS) and the Global Positioning System (GPS) is common in mobile mapping and navigation applications to seamlessly determine the position, velocity, and orientation of the mobile platform. In most INS/GPS integrated architectures, the GPS is considered to be an accurate reference with which to correct for the systematic errors of the inertial sensors, which are composed of biases, scale factors and drift. However, the GPS receiver may produce abnormal pseudo-range errors mainly caused by ionospheric delay, tropospheric delay and the multipath effect. These errors degrade the overall position accuracy of an integrated system that uses conventional INS/GPS integration strategies such as loosely coupled (LC) and tightly coupled (TC) schemes. Conventional tightly coupled INS/GPS integration schemes apply the Klobuchar model and the Hopfield model to reduce pseudo-range delays caused by ionospheric delay and tropospheric delay, respectively, but do not address the multipath problem. However, the multipath effect (from reflected GPS signals) affects the position error far more significantly in a consumer-grade GPS receiver than in an expensive, geodetic-grade GPS receiver. To avoid this problem, a new integrated INS/GPS architecture is proposed. The proposed method is described and applied in a real-time integrated system with two integration strategies, namely, loosely coupled and tightly coupled schemes, respectively. To verify the effectiveness of the proposed method, field tests with various scenarios are conducted and the results are compared with a reliable reference system.


Assuntos
Acelerometria/instrumentação , Algoritmos , Artefatos , Sistemas de Informação Geográfica/instrumentação , Veículos Automotores , Transdutores , Sistemas Computacionais , Desenho de Equipamento , Análise de Falha de Equipamento , Integração de Sistemas
7.
Sensors (Basel) ; 13(9): 11280-8, 2013 Aug 23.
Artigo em Inglês | MEDLINE | ID: mdl-23979480

RESUMO

This paper presents an evaluation of the map-matching scheme of an integrated GPS/INS system in urban areas. Data fusion using a Kalman filter and map matching are effective approaches to improve the performance of navigation system applications based on GPS/MEMS IMUs. The study considers the curve-to-curve matching algorithm after Kalman filtering to correct mismatch and eliminate redundancy. By applying data fusion and map matching, the study easily accomplished mapping of a GPS/INS trajectory onto the road network. The results demonstrate the effectiveness of the algorithms in controlling the INS drift error and indicate the potential of low-cost MEMS IMUs in navigation applications.


Assuntos
Algoritmos , Cidades , Sistemas de Informação Geográfica , Interpretação de Imagem Assistida por Computador/métodos , Armazenamento e Recuperação da Informação/métodos , Reconhecimento Automatizado de Padrão/métodos , Técnica de Subtração
8.
Sensors (Basel) ; 12(7): 9161-80, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-23012538

RESUMO

To facilitate applications such as environment detection or disaster monitoring, the development of rapid low cost systems for collecting near real time spatial information is very critical. Rapid spatial information collection has become an emerging trend for remote sensing and mapping applications. In this study, a fixed-wing Unmanned Aerial Vehicle (UAV)-based spatial information acquisition platform that can operate in Ground Control Point (GCP) free environments is developed and evaluated. The proposed UAV based photogrammetric platform has a Direct Georeferencing (DG) module that includes a low cost Micro Electro Mechanical Systems (MEMS) Inertial Navigation System (INS)/Global Positioning System (GPS) integrated system. The DG module is able to provide GPS single frequency carrier phase measurements for differential processing to obtain sufficient positioning accuracy. All necessary calibration procedures are implemented. Ultimately, a flight test is performed to verify the positioning accuracy in DG mode without using GCPs. The preliminary results of positioning accuracy in DG mode illustrate that horizontal positioning accuracies in the x and y axes are around 5 m at 300 m flight height above the ground. The positioning accuracy of the z axis is below 10 m. Therefore, the proposed platform is relatively safe and inexpensive for collecting critical spatial information for urgent response such as disaster relief and assessment applications where GCPs are not available.

9.
Sensors (Basel) ; 12(12): 17372-89, 2012 Dec 13.
Artigo em Inglês | MEDLINE | ID: mdl-23443403

RESUMO

The integration of the Inertial Navigation System (INS) and the Global Positioning System (GPS) is widely applied to seamlessly determine the time-variable position and orientation parameters of a system for navigation and mobile mapping applications. For optimal data fusion, the Kalman filter (KF) is often used for real-time applications. Backward smoothing is considered an optimal post-processing procedure. However, in current INS/GPS integration schemes, the KF and smoothing techniques still have some limitations. This article reviews the principles and analyzes the limitations of these estimators. In addition, an on-line smoothing method that overcomes the limitations of previous algorithms is proposed. For verification, an INS/GPS integrated architecture is implemented using a low-cost micro-electro-mechanical systems inertial measurement unit and a single-frequency GPS receiver. GPS signal outages are included in the testing trajectories to evaluate the effectiveness of the proposed method in comparison to conventional schemes.


Assuntos
Algoritmos , Sistemas de Informação Geográfica , Sistemas Microeletromecânicos , Humanos , Integração de Sistemas
10.
Sensors (Basel) ; 11(7): 7243-61, 2011.
Artigo em Inglês | MEDLINE | ID: mdl-22164015

RESUMO

A land-based mobile mapping system (MMS) is flexible and useful for the acquisition of road environment geospatial information. It integrates a set of imaging sensors and a position and orientation system (POS). The positioning quality of such systems is highly dependent on the accuracy of the utilized POS. This limitation is the major drawback due to the elevated cost associated with high-end GPS/INS units, particularly the inertial system. The potential accuracy of the direct sensor orientation depends on the architecture and quality of the GPS/INS integration process as well as the validity of the system calibration (i.e., calibration of the individual sensors as well as the system mounting parameters). In this paper, a novel single-step procedure using integrated sensor orientation with relative orientation constraint for the estimation of the mounting parameters is introduced. A comparative analysis between the proposed single-step and the traditional two-step procedure is carried out. Moreover, the estimated mounting parameters using the different methods are used in a direct geo-referencing procedure to evaluate their performance and the feasibility of the implemented system. Experimental results show that the proposed system using single-step system calibration method can achieve high 3D positioning accuracy.

11.
Sensors (Basel) ; 10(10): 9252-85, 2010.
Artigo em Inglês | MEDLINE | ID: mdl-22163407

RESUMO

Mobile mapping systems have been widely applied for acquiring spatial information in applications such as spatial information systems and 3D city models. Nowadays the most common technologies used for positioning and orientation of a mobile mapping system include a Global Positioning System (GPS) as the major positioning sensor and an Inertial Navigation System (INS) as the major orientation sensor. In the classical approach, the limitations of the Kalman Filter (KF) method and the overall price of multi-sensor systems have limited the popularization of most land-based mobile mapping applications. Although intelligent sensor positioning and orientation schemes consisting of Multi-layer Feed-forward Neural Networks (MFNNs), one of the most famous Artificial Neural Networks (ANNs), and KF/smoothers, have been proposed in order to enhance the performance of low cost Micro Electro Mechanical System (MEMS) INS/GPS integrated systems, the automation of the MFNN applied has not proven as easy as initially expected. Therefore, this study not only addresses the problems of insufficient automation in the conventional methodology that has been applied in MFNN-KF/smoother algorithms for INS/GPS integrated systems proposed in previous studies, but also exploits and analyzes the idea of developing alternative intelligent sensor positioning and orientation schemes that integrate various sensors in more automatic ways. The proposed schemes are implemented using one of the most famous constructive neural networks--the Cascade Correlation Neural Network (CCNNs)--to overcome the limitations of conventional techniques based on KF/smoother algorithms as well as previously developed MFNN-smoother schemes. The CCNNs applied also have the advantage of a more flexible topology compared to MFNNs. Based on the experimental data utilized the preliminary results presented in this article illustrate the effectiveness of the proposed schemes compared to smoother algorithms as well as the MFNN-smoother schemes.


Assuntos
Algoritmos , Sistemas de Informação Geográfica/instrumentação , Redes Neurais de Computação , Inteligência Artificial
12.
Sensors (Basel) ; 9(6): 5001-21, 2009.
Artigo em Inglês | MEDLINE | ID: mdl-22408565

RESUMO

Plum rains and typhoons are important weather systems in the Taiwan region. They can cause huge economic losses, but they are also considered as important water resources as they strike Taiwan annually and fill the reservoirs around the island. There are many meteorological sensors available for investigating the characteristics of weather and climate systems. Recently, the use of GPS as an alternative meteorological sensor has become popular due to the catastrophic impact of global climate change. GPS provides meteorological parameters mainly from the atmosphere. Precise Point Positioning (PPP) is a proven algorithm that has attracted attention in GPS related studies. This study uses GPS measurements collected at more than fifty reference stations of the e-GPS network in Taiwan. The first data set was collected from June 1st 2008 to June 7th 2008, which corresponds to the middle of the plum rain season in Taiwan. The second data set was collected from September 11th to September 17th 2008 during the landfall of typhoon Sinlaku. The data processing strategy is to process the measurements collected at the reference stations of the e-GPS network using the PPP technique to estimate the zenith tropospheric delay (ZTD) values of the sites; thus, the correlations between the ZTD values and the variation of rainfall during the plum rains and typhoon are analyzed. In addition, several characteristics of the meteorological events are identified using spatial and temporal analyses of the ZTD values estimated with the GPS network PPP technique.

13.
Sensors (Basel) ; 9(4): 2586-610, 2009.
Artigo em Inglês | MEDLINE | ID: mdl-22574034

RESUMO

Digital mobile mapping, which integrates digital imaging with direct geo-referencing, has developed rapidly over the past fifteen years. Direct geo-referencing is the determination of the time-variable position and orientation parameters for a mobile digital imager. The most common technologies used for this purpose today are satellite positioning using Global Positioning System (GPS) and Inertial Navigation System (INS) using an Inertial Measurement Unit (IMU). They are usually integrated in such a way that the GPS receiver is the main position sensor, while the IMU is the main orientation sensor. The Kalman Filter (KF) is considered as the optimal estimation tool for real-time INS/GPS integrated kinematic position and orientation determination. An intelligent hybrid scheme consisting of an Artificial Neural Network (ANN) and KF has been proposed to overcome the limitations of KF and to improve the performance of the INS/GPS integrated system in previous studies. However, the accuracy requirements of general mobile mapping applications can't be achieved easily, even by the use of the ANN-KF scheme. Therefore, this study proposes an intelligent position and orientation determination scheme that embeds ANN with conventional Rauch-Tung-Striebel (RTS) smoother to improve the overall accuracy of a MEMS INS/GPS integrated system in post-mission mode. By combining the Micro Electro Mechanical Systems (MEMS) INS/GPS integrated system and the intelligent ANN-RTS smoother scheme proposed in this study, a cheaper but still reasonably accurate position and orientation determination scheme can be anticipated.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...