Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nat Nanotechnol ; 16(1): 58-62, 2021 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-33169008

RESUMO

Non-volatile resistive switching, also known as memristor1 effect, where an electric field switches the resistance states of a two-terminal device, has emerged as an important concept in the development of high-density information storage, computing and reconfigurable systems2-9. The past decade has witnessed substantial advances in non-volatile resistive switching materials such as metal oxides and solid electrolytes. It was long believed that leakage currents would prevent the observation of this phenomenon for nanometre-thin insulating layers. However, the recent discovery of non-volatile resistive switching in two-dimensional monolayers of transition metal dichalcogenide10,11 and hexagonal boron nitride12 sandwich structures (also known as atomristors) has refuted this belief and added a new materials dimension owing to the benefits of size scaling10,13. Here we elucidate the origin of the switching mechanism in atomic sheets using monolayer MoS2 as a model system. Atomistic imaging and spectroscopy reveal that metal substitution into a sulfur vacancy results in a non-volatile change in the resistance, which is corroborated by computational studies of defect structures and electronic states. These findings provide an atomistic understanding of non-volatile switching and open a new direction in precision defect engineering, down to a single defect, towards achieving the smallest memristor for applications in ultra-dense memory, neuromorphic computing and radio-frequency communication systems2,3,11.

2.
Adv Mater ; 31(15): e1806790, 2019 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-30773734

RESUMO

2D materials have attracted much interest over the past decade in nanoelectronics. However, it was believed that the atomically thin layered materials are not able to show memristive effect in vertically stacked structure, until the recent discovery of monolayer transition metal dichalcogenide (TMD) atomristors, overcoming the scaling limit to sub-nanometer. Herein, the nonvolatile resistance switching (NVRS) phenomenon in monolayer hexagonal boron nitride (h-BN), a typical 2D insulator, is reported. The h-BN atomristors are studied using different electrodes and structures, featuring forming-free switching in both unipolar and bipolar operations, with large on/off ratio (up to 107 ). Moreover, fast switching speed (<15 ns) is demonstrated via pulse operation. Compared with monolayer TMDs, the one-atom-thin h-BN sheet reduces the vertical scaling to ≈0.33 nm, representing a record thickness for memory materials. Simulation results based on ab-initio method reveal that substitution of metal ions into h-BN vacancies during electrical switching is a likely mechanism. The existence of NVRS in monolayer h-BN indicates fruitful interactions between defects, metal ions and interfaces, and can advance emerging applications on ultrathin flexible memory, printed electronics, neuromorphic computing, and radio frequency switches.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...