Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Int J Mol Sci ; 25(6)2024 Mar 16.
Artigo em Inglês | MEDLINE | ID: mdl-38542358

RESUMO

The clinical success of dental titanium implants is profoundly linked to implant stability and osseointegration, which comprises pre-osteoblast proliferation, osteogenic differentiation, and extracellular mineralization. Because of the bio-inert nature of titanium, surface processing using subtractive or additive methods enhances osseointegration ability but limits the benefit due to accompanying surface contamination. By contrast, laser processing methods increase the roughness of the implant surface without contamination. However, the effects of laser-mediated distinct surface structures on the osteointegration level of osteoblasts are controversial. The role of a titanium surface with a laser-mediated microchannel structure in pre-osteoblast maturation remains unclear. This study aimed to elucidate the effect of laser-produced microchannels on pre-osteoblast maturation. Pre-osteoblast human embryonic palatal mesenchymal cells were seeded on a titanium plate treated with grinding (G), sandblasting with large grit and acid etching (SLA), or laser irradiation (L) for 3-18 days. The proliferation and morphology of pre-osteoblasts were evaluated using a Trypan Blue dye exclusion test and fluorescence microscopy. The mRNA expression, protein expression, and protein secretion of osteogenic differentiation markers in pre-osteoblasts were evaluated using reverse transcriptase quantitative polymerase chain reaction, a Western blot assay, and a multiplex assay, respectively. The extracellular calcium precipitation of pre-osteoblast was measured using Alizarin red S staining. Compared to G- and SLA-treated titanium surfaces, the laser-produced microchannel surfaces enhanced pre-osteoblast proliferation, the expression/secretion of osteogenic differentiation markers, and extracellular calcium precipitation. Laser-treated titanium implants may enhance the pre-osteoblast maturation process and provide extra benefits in clinical application.


Assuntos
Cálcio , Titânio , Humanos , Titânio/farmacologia , Titânio/química , Propriedades de Superfície , Cálcio/farmacologia , Osteogênese , Lasers , Diferenciação Celular , Antígenos de Diferenciação , Proliferação de Células , Osteoblastos , Osseointegração
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...