Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 22
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Adv Mater ; : e2307508, 2024 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-38728063

RESUMO

Halide perovskites are excellent candidate materials for use in solar cell, LED, and detector devices, in part because their composition can be tuned to achieve ideal optoelectronic properties. Empirical efficiency optimization has led the field toward compositions rich in FA (formamidinium) on the A-site and I on the X-site, with additional small amounts of MA (methylammonium) or Cs A-site cations and Br X-site anions. However, it is not clear how and why the specific compositions of alloyed, that is, mixed component, halide perovskites relate to photo-stability of the materials. Here, this work combines synchrotron grazing incidence wide-angle X-ray scattering, photoluminescence, high-resolution scanning electron diffraction measurements and theoretical modelling to reveal the links between material structure and photostability. Namely, this work finds that increased octahedral titling leads to improved photo-stability that is correlated with lower densities of performance-harming hexagonal polytype impurities. These results uncover the structural signatures underpinning photo-stability and can therefore be used to make targeted changes to halide perovskites, bettering the commercial prospects of technologies based on these materials.

2.
ACS Energy Lett ; 9(2): 442-453, 2024 Feb 09.
Artigo em Inglês | MEDLINE | ID: mdl-38356934

RESUMO

This work explores electrochemical impedance spectroscopy to study recombination and ionic processes in all-perovskite tandem solar cells. We exploit selective excitation of each subcell to enhance or suppress the impedance signal from each subcell, allowing study of individual tandem subcells. We use this selective excitation methodology to show that the recombination resistance and ionic time constants of the wide gap subcell are increased with passivation. Furthermore, we investigate subcell-dependent degradation during maximum power point tracking and find an increase in recombination resistance and a decrease in capacitance for both subcells. Complementary optical and external quantum efficiency measurements indicate that the main driver for performance loss is the reduced capacity of the recombination layer to facilitate recombination due to the formation of a charge extraction barrier. This methodology highlights electrochemical impedance spectroscopy as a powerful tool to provide critical feedback to unlock the full potential of perovskite tandem solar cells.

3.
RSC Adv ; 13(31): 21138-21145, 2023 Jul 12.
Artigo em Inglês | MEDLINE | ID: mdl-37449029

RESUMO

With a remarkable tolerance to high-energetic radiation and potential high power-to-weight ratios, halide perovskite-based solar cells are interesting for future space PV applications. In this work, we fabricate and test methylammonium-free, co-evaporated FA0.7Cs0.3Pb(I0.9Br0.1)3 perovskite solar cells that could potentially be fabricated in space or on the Moon by physical vapor deposition, making use of the available vacuum present. The absence of methylammonium hereby increased the UV-light stability significantly, an important factor considering the increased UV proportion in the extra-terrestrial solar spectrum. We then tested their radiation tolerance under high energetic proton irradiation and found that the PCE degraded to 0.79 of its initial value due to coloring of the glass substrate, a typical problem that often complicates analysis. To disentangle damage mechanisms and to assess whether the perovskite degraded, we employ injection-current-dependent electroluminescence (EL) and intensity-dependent VOC measurements to derive pseudo-JV curves that are independent of parasitic effects. This way we identify a high radiation tolerance with 0.96 of the initial PCE remaining after 1 × 1013 p+ cm-2 which is beyond today's space material systems (<0.8) and on par with those of previously tested solution-processed perovskite solar cells. Together our results render co-evaporated perovskites as highly interesting candidates for future space manufacturing, while the pseudo-JV methodology presents an important tool to disentangle parasitic effects.

4.
ACS Energy Lett ; 8(6): 2728-2737, 2023 Jun 09.
Artigo em Inglês | MEDLINE | ID: mdl-37324541

RESUMO

All-perovskite tandem solar cells beckon as lower cost alternatives to conventional single-junction cells. Solution processing has enabled rapid optimization of perovskite solar technologies, but new deposition routes will enable modularity and scalability, facilitating technology adoption. Here, we utilize 4-source vacuum deposition to deposit FA0.7Cs0.3Pb(IxBr1-x)3 perovskite, where the bandgap is changed through fine control over the halide content. We show how using MeO-2PACz as a hole-transporting material and passivating the perovskite with ethylenediammonium diiodide reduces nonradiative losses, resulting in efficiencies of 17.8% in solar cells based on vacuum-deposited perovskites with a bandgap of 1.76 eV. By similarly passivating a narrow-bandgap FA0.75Cs0.25Pb0.5Sn0.5I3 perovskite and combining it with a subcell of evaporated FA0.7Cs0.3Pb(I0.64Br0.36)3, we report a 2-terminal all-perovskite tandem solar cell with champion open circuit voltage and efficiency of 2.06 V and 24.1%, respectively. This dry deposition method enables high reproducibility, opening avenues for modular, scalable multijunction devices even in complex architectures.

5.
ACS Energy Lett ; 8(1): 250-258, 2023 Jan 13.
Artigo em Inglês | MEDLINE | ID: mdl-36660372

RESUMO

Band gap tunability of lead mixed halide perovskites makes them promising candidates for various applications in optoelectronics. Here we use the localization landscape theory to reveal that the static disorder due to iodide:bromide compositional alloying contributes at most 3 meV to the Urbach energy. Our modeling reveals that the reason for this small contribution is due to the small effective masses in perovskites, resulting in a natural length scale of around 20 nm for the "effective confining potential" for electrons and holes, with short-range potential fluctuations smoothed out. The increase in Urbach energy across the compositional range agrees well with our optical absorption measurements. We model systems of sizes up to 80 nm in three dimensions, allowing us to accurately reproduce the experimentally observed absorption spectra of perovskites with halide segregation. Our results suggest that we should look beyond static contribution and focus on the dynamic temperature dependent contribution to the Urbach energy.

6.
Adv Mater ; 34(36): e2202163, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-35866352

RESUMO

Mixed-halide mixed-cation hybrid perovskites are among the most promising perovskite compositions for application in a variety of optoelectronic devices due to their high performance, low cost, and bandgap-tuning capabilities. Instability pathways such as those driven by ionic migration, however, continue to hinder their further progress. Here, an operando variable-pitch synchrotron grazing-incidence wide-angle X-ray scattering technique is used to track the surface and bulk structural changes in mixed-halide mixed-cation perovskite solar cells under continuous load and illumination. By monitoring the evolution of the material structure, it is demonstrated that halide remixing along the electric field and illumination direction during operation hinders phase segregation and limits device instability. Correlating the evolution with directionality- and depth-dependent analyses, it is proposed that this halide remixing is induced by an electrostrictive effect acting along the substrate out-of-plane direction. However, this stabilizing effect is overwhelmed by competing halide demixing processes in devices exposed to humid air or with poorer starting performance. The findings shed new light on understanding halide de- and re-mixing competitions and their impact on device longevity. These operando techniques allow real-time tracking of the structural evolution in full optoelectronic devices and unveil otherwise inaccessible insights into rapid structural evolution under external stress conditions.

7.
Nature ; 607(7918): 294-300, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35609624

RESUMO

Understanding the nanoscopic chemical and structural changes that drive instabilities in emerging energy materials is essential for mitigating device degradation. The power conversion efficiency of halide perovskite photovoltaic devices has reached 25.7 per cent in single-junction and 29.8 per cent in tandem perovskite/silicon cells1,2, yet retaining such performance under continuous operation has remained elusive3. Here we develop a multimodal microscopy toolkit to reveal that in leading formamidinium-rich perovskite absorbers, nanoscale phase impurities, including hexagonal polytype and lead iodide inclusions, are not only traps for photoexcited carriers, which themselves reduce performance4,5, but also, through the same trapping process, are sites at which photochemical degradation of the absorber layer is seeded. We visualize illumination-induced structural changes at phase impurities associated with trap clusters, revealing that even trace amounts of these phases, otherwise undetected with bulk measurements, compromise device longevity. The type and distribution of these unwanted phase inclusions depends on the film composition and processing, with the presence of polytypes being most detrimental for film photo-stability. Importantly, we reveal that both performance losses and intrinsic degradation processes can be mitigated by modulating these defective phase impurities, and demonstrate that this requires careful tuning of local structural and chemical properties. This multimodal workflow to correlate the nanoscopic landscape of beam-sensitive energy materials will be applicable to a wide range of semiconductors for which a local picture of performance and operational stability has yet to be established.

8.
Nat Nanotechnol ; 17(2): 190-196, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-34811554

RESUMO

Halide perovskites perform remarkably in optoelectronic devices. However, this exceptional performance is striking given that perovskites exhibit deep charge-carrier traps and spatial compositional and structural heterogeneity, all of which should be detrimental to performance. Here, we resolve this long-standing paradox by providing a global visualization of the nanoscale chemical, structural and optoelectronic landscape in halide perovskite devices, made possible through the development of a new suite of correlative, multimodal microscopy measurements combining quantitative optical spectroscopic techniques and synchrotron nanoprobe measurements. We show that compositional disorder dominates the optoelectronic response over a weaker influence of nanoscale strain variations even of large magnitude. Nanoscale compositional gradients drive carrier funnelling onto local regions associated with low electronic disorder, drawing carrier recombination away from trap clusters associated with electronic disorder and leading to high local photoluminescence quantum efficiency. These measurements reveal a global picture of the competitive nanoscale landscape, which endows enhanced defect tolerance in devices through spatial chemical disorder that outcompetes both electronic and structural disorder.

9.
Science ; 374(6575): 1598-1605, 2021 Dec 24.
Artigo em Inglês | MEDLINE | ID: mdl-34941391

RESUMO

Efforts to stabilize photoactive formamidinium (FA)­based halide perovskites for perovskite photovoltaics have focused on the growth of cubic formamidinium lead iodide (α-FAPbI3) phases by empirically alloying with cesium, methylammonium (MA) cations, or both. We show that such stabilized FA-rich perovskites are noncubic and exhibit ~2° octahedral tilting at room temperature. This tilting, resolvable only with the use of local nanostructure characterization techniques, imparts phase stability by frustrating transitions from photoactive to hexagonal phases. Although the bulk phase appears stable when examined macroscopically, heterogeneous cation distributions allow microscopically unstable regions to form; we found that these transitioned to hexagonal polytypes, leading to local trap-assisted performance losses and photoinstabilities. Using surface-bound ethylenediaminetetraacetic acid, we engineered an octahedral tilt into pure α-FAPbI3 thin films without any cation alloying. The templated photoactive FAPbI3 film was extremely stable against thermal, environmental, and light stressors.

10.
Adv Mater ; 33(32): e2102462, 2021 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-34219285

RESUMO

Hybrid-perovskite-based optoelectronic devices are demonstrating unprecedented growth in performance, and defect passivation approaches are highly promising routes to further improve properties. Here, the effect of the molecular ion BF4 - , introduced via methylammonium tetrafluoroborate (MABF4 ) in a surface treatment for MAPbI3 perovskite, is reported. Optical spectroscopy characterization shows that the introduction of tetrafluoroborate leads to reduced non-radiative charge-carrier recombination with a reduction in first-order recombination rate from 6.5 × 106 to 2.5 × 105 s-1 in BF4 - -treated samples, and a consequent increase in photoluminescence quantum yield by an order of magnitude (from 0.5 to 10.4%). 19 F, 11 B, and 14 N solid-state NMR is used to elucidate the atomic-level mechanism of the BF4 - additive-induced improvements, revealing that the BF4 - acts as a scavenger of excess MAI by forming MAI-MABF4 cocrystals. This shifts the equilibrium of iodide concentration in the perovskite phase, thereby reducing the concentration of interstitial iodide defects that act as deep traps and non-radiative recombination centers. These collective results allow us to elucidate the microscopic mechanism of action of BF4 - .

11.
ACS Energy Lett ; 6(2): 612-620, 2021 Feb 12.
Artigo em Inglês | MEDLINE | ID: mdl-33614966

RESUMO

Perovskite-based tandem solar cells are of increasing interest as they approach commercialization. Here we use experimental parameters from optical spectroscopy measurements to calculate the limiting efficiency of perovskite-silicon and all-perovskite two-terminal tandems, employing currently available bandgap materials, as 42.0% and 40.8%, respectively. We show luminescence coupling between subcells (the optical transfer of photons from the high-bandgap to low-bandgap subcell) relaxes current matching when the high-bandgap subcell is a luminescent perovskite. We calculate that luminescence coupling becomes important at charge trapping rates (≤106 s-1) already being achieved in relevant halide perovskites. Luminescence coupling increases flexibility in subcell thicknesses and tolerance to different spectral conditions. For maximal benefit, the high-bandgap subcell should have the higher short-circuit current under average spectral conditions. This can be achieved by reducing the bandgap of the high-bandgap subcell, allowing wider, unstable bandgap compositions to be avoided. Lastly, we visualize luminescence coupling in an all-perovskite tandem through cross-section luminescence imaging.

12.
Adv Mater ; 33(7): e2006435, 2021 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-33393159

RESUMO

Understanding the fundamental properties of buried interfaces in perovskite photovoltaics is of paramount importance to the enhancement of device efficiency and stability. Nevertheless, accessing buried interfaces poses a sizeable challenge because of their non-exposed feature. Herein, the mystery of the buried interface in full device stacks is deciphered by combining advanced in situ spectroscopy techniques with a facile lift-off strategy. By establishing the microstructure-property relations, the basic losses at the contact interfaces are systematically presented, and it is found that the buried interface losses induced by both the sub-microscale extended imperfections and lead-halide inhomogeneities are major roadblocks toward improvement of device performance. The losses can be considerably mitigated by the use of a passivation-molecule-assisted microstructural reconstruction, which unlocks the full potential for improving device performance. The findings open a new avenue to understanding performance losses and thus the design of new passivation strategies to remove imperfections at the top surfaces and buried interfaces of perovskite photovoltaics, resulting in substantial enhancement in device performance.

13.
Artigo em Inglês | MEDLINE | ID: mdl-33256071

RESUMO

BACKGROUND: The traditional home care model entails caring "for" people with disabilities, not "with" them. Reablement care has been applied to long-term care, but the evidence for care attendants, home care recipients, and family caregivers simultaneously is limited. METHODS: First, a survey was conducted to explore the needs of home care recipients and family caregivers to achieve independence at home to develop the reablement home care model for home care. Then, an intervention with two groups was implemented. The experimental group included a total of 86 people who participated in the reablement home care model. The control group included 100 people and received usual home care. The self-reliance concept, job satisfaction, and sense of achievement for care attendants; quality of life for home care users; and caregiving burden for family caregivers were assessed. RESULTS: The reablement home care model improved the job satisfaction and achievement of home care attendants, improved mutual support and independence in the self-reliance concept and quality of life among the users, and reduced the stress of the users and family caregivers. CONCLUSION: The reablement home care model improved the outcomes for providers, care recipients, and family caregivers. Reablement home care is suggested in long-term care policies.


Assuntos
Cuidadores , Pessoas com Deficiência , Serviços de Assistência Domiciliar , Atividades Cotidianas , Idoso , Idoso de 80 Anos ou mais , Feminino , Humanos , Vida Independente , Masculino , Pessoa de Meia-Idade , Qualidade de Vida
14.
ACS Energy Lett ; 5(8): 2498-2504, 2020 Aug 14.
Artigo em Inglês | MEDLINE | ID: mdl-32832697

RESUMO

Halide perovskites of the form ABX3 have shown outstanding properties for solar cells. The highest reported compositions consist of mixtures of A-site cations methylammonium (MA), formamidinium (FA) and cesium, and X-site iodide and bromide ions, and are produced by solution processing. However, it is unclear whether solution processing will yield sufficient spatial performance uniformity for large-scale photovoltaic modules or compatibility with deposition of multilayered tandem solar cell stacks. In addition, the volatile MA cation presents long-term stability issues. Here, we report the multisource vacuum deposition of FA0.7Cs0.3Pb(I0.9Br0.1)3 perovskite thin films with high-quality morphological, structural, and optoelectronic properties. We find that the controlled addition of excess PbI2 during the deposition is critical for achieving high performance and stability of the absorber material, and we fabricate p-i-n solar cells with stabilized power output of 18.2%. We also reveal the sensitivity of the deposition process to a range of parameters, including substrate, annealing temperature, evaporation rates, and source purity, providing a guide for further evaporation efforts. Our results demonstrate the enormous promise for MA-free perovskite solar cells employing industry-scalable multisource evaporation processes.

15.
J Phys Chem Lett ; 11(16): 6505-6512, 2020 Aug 20.
Artigo em Inglês | MEDLINE | ID: mdl-32693601

RESUMO

It is common practice in the lead halide perovskite solar cell field to add a small molar excess of lead iodide (PbI2) to the precursor solution to increase the device performance. However, recent reports have shown that an excess of PbI2 can accelerate performance loss. In addition, PbI2 is photoactive (band gap ∼2.3 eV), which may lead to parasitic absorption losses in a solar cell. Here we show that devices using small quantities of excess PbI2 exhibit better device performance as compared with stoichiometric devices, both initially and for the duration of a stability test under operating conditions, primarily by enhancing the charge extraction. However, the photolysis of PbI2 negates the beneficial effect on charge extraction by leaving voids in the perovskite film and introduces trap states that are detrimental for device performance. We propose that although excess PbI2 provides a good template for enhanced performance, the community must continue to seek other additives or synthesis routes that fulfill the same beneficial role as excess PbI2, but without the photolysis that negates these beneficial effects under long-term device operation.

16.
Nature ; 580(7803): 360-366, 2020 04.
Artigo em Inglês | MEDLINE | ID: mdl-32296189

RESUMO

Halide perovskite materials have promising performance characteristics for low-cost optoelectronic applications. Photovoltaic devices fabricated from perovskite absorbers have reached power conversion efficiencies above 25 per cent in single-junction devices and 28 per cent in tandem devices1,2. This strong performance (albeit below the practical limits of about 30 per cent and 35 per cent, respectively3) is surprising in thin films processed from solution at low-temperature, a method that generally produces abundant crystalline defects4. Although point defects often induce only shallow electronic states in the perovskite bandgap that do not affect performance5, perovskite devices still have many states deep within the bandgap that trap charge carriers and cause them to recombine non-radiatively. These deep trap states thus induce local variations in photoluminescence and limit the device performance6. The origin and distribution of these trap states are unknown, but they have been associated with light-induced halide segregation in mixed-halide perovskite compositions7 and with local strain8, both of which make devices less stable9. Here we use photoemission electron microscopy to image the trap distribution in state-of-the-art halide perovskite films. Instead of a relatively uniform distribution within regions of poor photoluminescence efficiency, we observe discrete, nanoscale trap clusters. By correlating microscopy measurements with scanning electron analytical techniques, we find that these trap clusters appear at the interfaces between crystallographically and compositionally distinct entities. Finally, by generating time-resolved photoemission sequences of the photo-excited carrier trapping process10,11, we reveal a hole-trapping character with the kinetics limited by diffusion of holes to the local trap clusters. Our approach shows that managing structure and composition on the nanoscale will be essential for optimal performance of halide perovskite devices.

17.
RSC Adv ; 9(56): 32833-32838, 2019 Oct 10.
Artigo em Inglês | MEDLINE | ID: mdl-35529752

RESUMO

Perovskite solar cells have attracted much attention as next-generation solar cells because of their high efficiency and low fabrication costs. Moreover, perovskite solar cells are a promising candidate for indoor energy harvesting. We investigated the effect of bandgap tuning on the characteristics of triple cation-based perovskite solar cells under fluorescent lamp illumination. According to the current density-voltage curves, perovskite solar cells with a wider bandgap than the conventional one exhibited improved open-circuit voltage without sacrificing short-circuit current density under fluorescent lamp illumination. Moreover, the wider bandgap perovskite films including a large amount of bromine in the composition did not show phase segregation, which can degrade the photovoltaic performance of perovskite solar cells, after fluorescent lamp illumination. Our results demonstrate the facile strategy to improve the performance of perovskite solar cells under ambient lighting and great potential of perovskite solar cells for indoor applications such as power sources for the internet of things.

18.
Health Soc Care Community ; 27(2): 337-347, 2019 03.
Artigo em Inglês | MEDLINE | ID: mdl-30175465

RESUMO

Community care centres (CCCs) are widespread across Taiwan and have provided health promotion and social activities for older people in communities since 1995. The purpose of this study was to describe the status of the delivery and management of CCCs for older people, and to explore the effects of individual factors and the organisational factors on the health-related outcome of older people's participation in CCCs. The sample was taken from participants at CCCs in Taichung, Taiwan. Twenty-five CCCs participated in the study. The managers and the elderly participants of CCCs underwent face-to-face interviews. In total, 417 elderly participants and 25 chiefs completed the face-to-face interviews. The participants reported that self-reported health, sleep quality, memory, family relationships, care for health, and health literacy improved after they participated in the programme. There were no consistent organisational factors related to the outcomes. However, management style was related to sleep quality improvement and staffing getting paid was related to family relationship improvement. Policy recommendations are provided.


Assuntos
Centros Comunitários de Saúde , Avaliação de Resultados em Cuidados de Saúde , Idoso , Idoso de 80 Anos ou mais , Centros Comunitários de Saúde/organização & administração , Feminino , Promoção da Saúde , Nível de Saúde , Humanos , Entrevistas como Assunto , Modelos Logísticos , Masculino , Pesquisa Qualitativa , Autorrelato , Capital Social , Taiwan
19.
Adv Mater ; 30(30): e1801401, 2018 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-29883002

RESUMO

The fabrication of multidimensional organometallic halide perovskite via a low-pressure vapor-assisted solution process is demonstrated for the first time. Phenyl ethyl-ammonium iodide (PEAI)-doped lead iodide (PbI2 ) is first spin-coated onto the substrate and subsequently reacts with methyl-ammonium iodide (MAI) vapor in a low-pressure heating oven. The doping ratio of PEAI in MAI-vapor-treated perovskite has significant impact on the crystalline structure, surface morphology, grain size, UV-vis absorption and photoluminescence spectra, and the resultant device performance. Multiple photoluminescence spectra are observed in the perovskite film starting with high PEAI/PbI2 ratio, which suggests the coexistence of low-dimensional perovskite (PEA2 MAn-1 Pbn I3n+1 ) with various values of n after vapor reaction. The dimensionality of the as-fabricated perovskite film reveals an evolution from 2D, hybrid 2D/3D to 3D structure when the doping level of PEAI/PbI2 ratio varies from 2 to 0. Scanning electron microscopy images and Kelvin probe force microscopy mapping show that the PEAI-containing perovskite grain is presumably formed around the MAPbI3 perovskite grain to benefit MAPbI3 grain growth. The device employing perovskite with PEAI/PbI2 = 0.05 achieves a champion power conversion efficiency of 19.10% with an open-circuit voltage of 1.08 V, a current density of 21.91 mA cm-2 , and a remarkable fill factor of 80.36%.


Assuntos
Compostos de Cálcio/química , Óxidos/química , Titânio/química , Energia Solar
20.
ACS Appl Mater Interfaces ; 9(48): 41845-41854, 2017 Dec 06.
Artigo em Inglês | MEDLINE | ID: mdl-29134795

RESUMO

A robust and recyclable monolithic substrate applying all-inorganic metal-oxide selective contact with a nanoporous (np) Au:NiOx counter electrode is successfully demonstrated for efficient perovskite solar cells, of which the perovskite active layer is deposited in the final step for device fabrication. Through annealing of the Ni/Au bilayer, the nanoporous NiO/Au electrode is formed in virtue of interconnected Au network embedded in oxidized Ni. By optimizing the annealing parameters and tuning the mesoscopic layer thickness (mp-TiO2 and mp-Al2O3), a decent power conversion efficiency (PCE) of 10.25% is delivered. With mp-TiO2/mp-Al2O3/np-Au:NiOx as a template, the original perovskite solar cell with 8.52% PCE can be rejuvenated by rinsing off the perovskite material with dimethylformamide and refilling with newly deposited perovskite. A renewed device using the recycled substrate once and twice, respectively, achieved a PCE of 8.17 and 7.72% that are comparable to original performance. This demonstrates that the novel device architecture is possible to recycle the expensive transparent conducting glass substrates together with all the electrode constituents. Deposition of stable multicomponent perovskite materials in the template also achieves an efficiency of 8.54%, which shows its versatility for various perovskite materials. The application of such a novel NiO/Au nanoporous electrode has promising potential for commercializing cost-effective, large scale, and robust perovskite solar cells.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...