Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
2.
Nature ; 601(7891): 85-91, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34912115

RESUMO

The state and behaviour of a cell can be influenced by both genetic and environmental factors. In particular, tumour progression is determined by underlying genetic aberrations1-4 as well as the makeup of the tumour microenvironment5,6. Quantifying the contributions of these factors requires new technologies that can accurately measure the spatial location of genomic sequence together with phenotypic readouts. Here we developed slide-DNA-seq, a method for capturing spatially resolved DNA sequences from intact tissue sections. We demonstrate that this method accurately preserves local tumour architecture and enables the de novo discovery of distinct tumour clones and their copy number alterations. We then apply slide-DNA-seq to a mouse model of metastasis and a primary human cancer, revealing that clonal populations are confined to distinct spatial regions. Moreover, through integration with spatial transcriptomics, we uncover distinct sets of genes that are associated with clone-specific genetic aberrations, the local tumour microenvironment, or both. Together, this multi-modal spatial genomics approach provides a versatile platform for quantifying how cell-intrinsic and cell-extrinsic factors contribute to gene expression, protein abundance and other cellular phenotypes.


Assuntos
Células Clonais/metabolismo , Neoplasias Colorretais/genética , Neoplasias Colorretais/patologia , Genômica/métodos , Animais , Células Clonais/patologia , Variações do Número de Cópias de DNA/genética , Humanos , Camundongos , Fenótipo , RNA-Seq , Análise de Sequência de DNA , Transcrição Gênica , Transcriptoma
3.
Nat Commun ; 12(1): 1507, 2021 03 08.
Artigo em Inglês | MEDLINE | ID: mdl-33686069

RESUMO

ATAC-seq is a widely-applied assay used to measure genome-wide chromatin accessibility; however, its ability to detect active regulatory regions can depend on the depth of sequencing coverage and the signal-to-noise ratio. Here we introduce AtacWorks, a deep learning toolkit to denoise sequencing coverage and identify regulatory peaks at base-pair resolution from low cell count, low-coverage, or low-quality ATAC-seq data. Models trained by AtacWorks can detect peaks from cell types not seen in the training data, and are generalizable across diverse sample preparations and experimental platforms. We demonstrate that AtacWorks enhances the sensitivity of single-cell experiments by producing results on par with those of conventional methods using ~10 times as many cells, and further show that this framework can be adapted to enable cross-modality inference of protein-DNA interactions. Finally, we establish that AtacWorks can enable new biological discoveries by identifying active regulatory regions associated with lineage priming in rare subpopulations of hematopoietic stem cells.


Assuntos
Sequenciamento de Cromatina por Imunoprecipitação/métodos , Aprendizado Profundo , Epigenômica/métodos , Animais , Encéfalo , Cromatina , Humanos , Leucócitos , Camundongos , Sequências Reguladoras de Ácido Nucleico
4.
Science ; 371(6532)2021 02 26.
Artigo em Inglês | MEDLINE | ID: mdl-33384301

RESUMO

Understanding genome organization requires integration of DNA sequence and three-dimensional spatial context; however, existing genome-wide methods lack either base pair sequence resolution or direct spatial localization. Here, we describe in situ genome sequencing (IGS), a method for simultaneously sequencing and imaging genomes within intact biological samples. We applied IGS to human fibroblasts and early mouse embryos, spatially localizing thousands of genomic loci in individual nuclei. Using these data, we characterized parent-specific changes in genome structure across embryonic stages, revealed single-cell chromatin domains in zygotes, and uncovered epigenetic memory of global chromosome positioning within individual embryos. These results demonstrate how IGS can directly connect sequence and structure across length scales from single base pairs to whole organisms.


Assuntos
Genoma Humano , Genoma , Análise de Sequência de DNA , Animais , Sequência de Bases , Núcleo Celular/genética , Núcleo Celular/ultraestrutura , Cromatina/química , Cromatina/ultraestrutura , Posicionamento Cromossômico , Cromossomos Humanos/ultraestrutura , Cromossomos de Mamíferos/ultraestrutura , Embrião de Mamíferos , Desenvolvimento Embrionário , Epigênese Genética , Fibroblastos , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Camundongos , Análise de Célula Única , Análise Espacial
5.
Nat Biotechnol ; 39(4): 451-461, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-32788668

RESUMO

Natural mitochondrial DNA (mtDNA) mutations enable the inference of clonal relationships among cells. mtDNA can be profiled along with measures of cell state, but has not yet been combined with the massively parallel approaches needed to tackle the complexity of human tissue. Here, we introduce a high-throughput, droplet-based mitochondrial single-cell assay for transposase-accessible chromatin with sequencing (scATAC-seq), a method that combines high-confidence mtDNA mutation calling in thousands of single cells with their concomitant high-quality accessible chromatin profile. This enables the inference of mtDNA heteroplasmy, clonal relationships, cell state and accessible chromatin variation in individual cells. We reveal single-cell variation in heteroplasmy of a pathologic mtDNA variant, which we associate with intra-individual chromatin variability and clonal evolution. We clonally trace thousands of cells from cancers, linking epigenomic variability to subclonal evolution, and infer cellular dynamics of differentiating hematopoietic cells in vitro and in vivo. Taken together, our approach enables the study of cellular population dynamics and clonal properties in vivo.


Assuntos
DNA Mitocondrial/genética , Sequenciamento de Nucleotídeos em Larga Escala/métodos , Mitocôndrias/genética , Neoplasias/genética , Análise de Célula Única/métodos , Idoso de 80 Anos ou mais , Diferenciação Celular , Células Cultivadas , Evolução Clonal , Células Clonais , Epigênese Genética , Feminino , Técnicas de Genotipagem , Hematopoese , Humanos , Mutação , Análise de Sequência de DNA
6.
Cell ; 183(4): 1103-1116.e20, 2020 11 12.
Artigo em Inglês | MEDLINE | ID: mdl-33098772

RESUMO

Cell differentiation and function are regulated across multiple layers of gene regulation, including modulation of gene expression by changes in chromatin accessibility. However, differentiation is an asynchronous process precluding a temporal understanding of regulatory events leading to cell fate commitment. Here we developed simultaneous high-throughput ATAC and RNA expression with sequencing (SHARE-seq), a highly scalable approach for measurement of chromatin accessibility and gene expression in the same single cell, applicable to different tissues. Using 34,774 joint profiles from mouse skin, we develop a computational strategy to identify cis-regulatory interactions and define domains of regulatory chromatin (DORCs) that significantly overlap with super-enhancers. During lineage commitment, chromatin accessibility at DORCs precedes gene expression, suggesting that changes in chromatin accessibility may prime cells for lineage commitment. We computationally infer chromatin potential as a quantitative measure of chromatin lineage-priming and use it to predict cell fate outcomes. SHARE-seq is an extensible platform to study regulatory circuitry across diverse cells in tissues.


Assuntos
Cromatina/metabolismo , Perfilação da Expressão Gênica , RNA/genética , Análise de Célula Única , Animais , Diferenciação Celular/genética , Linhagem Celular , Linhagem da Célula/genética , Elementos Facilitadores Genéticos/genética , Feminino , Regulação da Expressão Gênica , Histonas/metabolismo , Camundongos Endogâmicos C57BL , Processamento de Proteína Pós-Traducional , RNA/metabolismo
7.
Cancer Cell ; 38(2): 212-228.e13, 2020 08 10.
Artigo em Inglês | MEDLINE | ID: mdl-32707078

RESUMO

Regulatory networks that maintain functional, differentiated cell states are often dysregulated in tumor development. Here, we use single-cell epigenomics to profile chromatin state transitions in a mouse model of lung adenocarcinoma (LUAD). We identify an epigenomic continuum representing loss of cellular identity and progression toward a metastatic state. We define co-accessible regulatory programs and infer key activating and repressive chromatin regulators of these cell states. Among these co-accessibility programs, we identify a pre-metastatic transition, characterized by activation of RUNX transcription factors, which mediates extracellular matrix remodeling to promote metastasis and is predictive of survival across human LUAD patients. Together, these results demonstrate the power of single-cell epigenomics to identify regulatory programs to uncover mechanisms and key biomarkers of tumor progression.


Assuntos
Adenocarcinoma/genética , Modelos Animais de Doenças , Epigenômica/métodos , Regulação Neoplásica da Expressão Gênica , Neoplasias Pulmonares/genética , Adenocarcinoma/metabolismo , Adenocarcinoma/patologia , Animais , Linhagem Celular Tumoral , Progressão da Doença , Perfilação da Expressão Gênica/métodos , Humanos , Neoplasias Pulmonares/metabolismo , Neoplasias Pulmonares/patologia , Camundongos Endogâmicos C57BL , Camundongos Knockout , Camundongos Transgênicos , Transdução de Sinais/genética , Análise de Célula Única/métodos
8.
Nat Genet ; 51(10): 1442-1449, 2019 10.
Artigo em Inglês | MEDLINE | ID: mdl-31501517

RESUMO

A large number of putative cis-regulatory sequences have been annotated in the human genome, but the genes they control remain poorly defined. To bridge this gap, we generate maps of long-range chromatin interactions centered on 18,943 well-annotated promoters for protein-coding genes in 27 human cell/tissue types. We use this information to infer the target genes of 70,329 candidate regulatory elements and suggest potential regulatory function for 27,325 noncoding sequence variants associated with 2,117 physiological traits and diseases. Integrative analysis of these promoter-centered interactome maps reveals widespread enhancer-like promoters involved in gene regulation and common molecular pathways underlying distinct groups of human traits and diseases.


Assuntos
Cromatina/metabolismo , Regulação da Expressão Gênica , Genoma Humano , Regiões Promotoras Genéticas , Sequências Reguladoras de Ácido Nucleico , Fatores de Transcrição/metabolismo , Cromatina/genética , Genômica , Humanos , Fatores de Transcrição/genética
9.
Brief Bioinform ; 16(5): 865-72, 2015 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-25614388

RESUMO

Transport systems comprise roughly 10% of all proteins in a cell, playing critical roles in many processes. Improving and expanding their classification is an important goal that can affect studies ranging from comparative genomics to potential drug target searches. It is not surprising that different classification systems for transport proteins have arisen, be it within a specialized database, focused on this functional class of proteins, or as part of a broader classification system for all proteins. Two such databases are the Transporter Classification Database (TCDB) and the Protein family (Pfam) database. As part of a long-term endeavor to improve consistency between the two classification systems, we have compared transporter annotations in the two databases to understand the rationale for differences and to improve both systems. Differences sometimes reflect the fact that one database has a particular transporter family while the other does not. Differing family definitions and hierarchical organizations were reconciled, resulting in recognition of 69 Pfam 'Domains of Unknown Function', which proved to be transport protein families to be renamed using TCDB annotations. Of over 400 potential new Pfam families identified from TCDB, 10% have already been added to Pfam, and TCDB has created 60 new entries based on Pfam data. This work, for the first time, reveals the benefits of comprehensive database comparisons and explains the differences between Pfam and TCDB.


Assuntos
Bases de Dados de Proteínas , Proteínas/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...