Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Chem Rev ; 122(2): 2017-2291, 2022 01 26.
Artigo em Inglês | MEDLINE | ID: mdl-34813277

RESUMO

We present here a review of the photochemical and electrochemical applications of multi-site proton-coupled electron transfer (MS-PCET) in organic synthesis. MS-PCETs are redox mechanisms in which both an electron and a proton are exchanged together, often in a concerted elementary step. As such, MS-PCET can function as a non-classical mechanism for homolytic bond activation, providing opportunities to generate synthetically useful free radical intermediates directly from a wide variety of common organic functional groups. We present an introduction to MS-PCET and a practitioner's guide to reaction design, with an emphasis on the unique energetic and selectivity features that are characteristic of this reaction class. We then present chapters on oxidative N-H, O-H, S-H, and C-H bond homolysis methods, for the generation of the corresponding neutral radical species. Then, chapters for reductive PCET activations involving carbonyl, imine, other X═Y π-systems, and heteroarenes, where neutral ketyl, α-amino, and heteroarene-derived radicals can be generated. Finally, we present chapters on the applications of MS-PCET in asymmetric catalysis and in materials and device applications. Within each chapter, we subdivide by the functional group undergoing homolysis, and thereafter by the type of transformation being promoted. Methods published prior to the end of December 2020 are presented.


Assuntos
Elétrons , Prótons , Técnicas de Química Sintética , Transporte de Elétrons , Oxirredução
2.
Org Lett ; 22(5): 1687-1691, 2020 03 06.
Artigo em Inglês | MEDLINE | ID: mdl-31873026

RESUMO

The preparation of substituted azetidines and larger ring, nitrogen-containing saturated heterocycles is enabled through efficient and selective intermolecular sp3-C-H amination of alkyl bromide derivatives. A range of substrates are demonstrated to undergo C-H amination and subsequent sulfamate alkylation in good to excellent yield. N-Phenoxysulfonyl-protected products can be unmasked under neutral or mild basic conditions to yield the corresponding cyclic secondary amines. The preparative convenience of this protocol is demonstrated through gram-scale and telescoped multistep procedures. Application of this technology is highlighted in a nine-step total synthesis of an unusual azetidine-containing natural product, penaresidin B.

3.
Angew Chem Int Ed Engl ; 57(18): 4956-4959, 2018 04 23.
Artigo em Inglês | MEDLINE | ID: mdl-29484792

RESUMO

A general and operationally convenient method for intermolecular amination of C(sp3 )-H bonds is described. This technology allows for efficient functionalization of complex molecules, including numerous pharmaceutical targets. The combination of pivalonitrile as a solvent, Al2 O3 as an additive, and phenyl sulfamate as a nitrogen source affords differential reaction performance and substrate scope. Mechanistic data strongly implicate a pathway for catalyst decomposition that initiates with solvent oxidation, thus providing rationale for the marked influence of pivalonitrile on this reaction process.

4.
J Org Chem ; 83(6): 3023-3033, 2018 03 16.
Artigo em Inglês | MEDLINE | ID: mdl-29313681

RESUMO

The desire for maximally efficient transformations in complex molecule synthesis has contributed to a surge of interest in C-H functionalization methods development in recent years. In contrast to the steady stream of methodological reports, however, there are noticeably fewer studies comparing the efficacies of different C-H functionalization protocols on a single structurally intricate substrate. Recognizing the importance of heteroatom incorporation in complex molecule synthesis, this report discloses a comparative examination of diverse strategies for C-O, C-N, and C-X bond formation through late-stage C-H oxidation of the tricyclic cyanthiwigin natural product core. Methods for allylic C-H acetoxylation, tertiary C-H hydroxylation, tertiary C-H amination, tertiary C-H azidation, and secondary C-H halogenation are explored. These efforts highlight the robustness and selectivities of many well-established protocols for C-H oxidation when applied to a complex molecular framework, and the findings are relevant to chemists aiming to employ such strategies in the context of chemical synthesis.


Assuntos
Produtos Biológicos/química , Carbono/química , Diterpenos/química , Hidrogênio/química , Alcenos/química , Catálise , Hidroxilação , Oxirredução
5.
Appl Microbiol Biotechnol ; 97(21): 9535-9, 2013 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-24022611

RESUMO

The actinomycete Streptomyces platensis produces two compounds that display antibacterial activity: platensimycin and platencin. These compounds were discovered by the Merck Research Laboratories, and a complex insoluble production medium was reported. We have used this medium as our starting point in our studies. In a previous study, we developed a semi-defined production medium, i.e., PM5. In the present studies, by varying the concentration of the components of PM5, we were able to develop a superior semi-defined medium, i.e., PM6, which contains a higher concentration of lactose. Versions of PM6, containing lower concentrations of all components, were also found to be superior to PM5. The new semi-defined production media contain dextrin, lactose, MOPS buffer, and ammonium sulfate in different concentrations. We determined antibiotic production capabilities using agar diffusion assays and chemical assays via thin-layer silica chromatography and high-performance liquid chromatography. We reduced crude nutrient carryover from the seed medium by washing the cells with distilled water. Using these semi-defined media, we determined that addition of the semi-defined component soluble starch stimulated antibiotic production and that it and dextrin could both be replaced with glucose, resulting in the chemically defined medium, PM7.


Assuntos
Adamantano/metabolismo , Aminobenzoatos/metabolismo , Anilidas/metabolismo , Antibacterianos/metabolismo , Meios de Cultura/química , Streptomyces/crescimento & desenvolvimento , Streptomyces/metabolismo , Cromatografia Líquida de Alta Pressão , Cromatografia em Camada Fina , Testes de Sensibilidade Microbiana
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...