Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Total Environ ; 856(Pt 1): 158772, 2023 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-36116659

RESUMO

Shallow landslides (SLs) are rapid soil mass movements, typically occurring in the mountain areas, involving the most superficial soil layers up to 5 to 10 m in depth. Damages, and casualties due to shallow landslides are recorded globally, and in literature a variety of models to study landslides have been implemented hitherto. Often times, shallow landslides occur in the wake of snowfall events, when sudden temperature increase triggers fast snow thaw, and soil moisture increases thereby. Several models studied the influence of intensity, and duration of rainfall upon shallow landslides, but the effect of snow melt in spring/summer was little considered so far. Thus, we developed a simple but robust, and parameter-wise parsimonious model, that mimics the triggering mechanism of SLs, accounting for the combined effect of precipitation duration and intensity, and snowmelt at thaw. The model is here applied to the case study of the high altitude Tartano basin, paradigmatic of SLs in the Alps of Lombardia. Our results showed that about 26 % of the Tartano basin slopes display unstable conditions. Using a traditional (i.e. rainfall-based) approach, the occurrence of shallow landslides was predicted in ca. 19 % of the basin, mainly during storms in October and November. In contrast, when snowmelt was included, the model was able to mimic potential SLs even during April and May, when snow melt rate is the highest, and may increase SLs triggering potential, to ca. 26 % of the treated area. With better spatial and temporal description of slope failure as achieved here, validated against observed failures, a public authority may be prepared to implement emergency plans, to prevent injuries, causalities, and damages to infrastructures even during springtime, when shallow landslides may occur in response to fast snowmelt, even during dry, clear sky days, and with scarce/null precipitation.


Assuntos
Deslizamentos de Terra , Solo/química , Neve , Estações do Ano , Congelamento
2.
Philos Trans R Soc Lond B Biol Sci ; 377(1857): 20210391, 2022 08 15.
Artigo em Inglês | MEDLINE | ID: mdl-35757885

RESUMO

Rising interest in large-scale afforestation and reforestation as a strategy for climate change mitigation has recently motivated research efforts aiming at the identification of areas suitable for the plantation of trees. An often-overlooked aspect of agroforestry projects for carbon sequestration is their impact on water resources. It is often unclear to what extent the establishment of forest vegetation would be limited by water availability, whether it would engender competition with other local water uses or induce water scarcity. Here we use global water models to study the hydrologic constraints and impacts of afforestation in tropical biomes. We find that 36% of total suitable and available afforestation areas are in areas where the rain alone can meet just up to the 40% of total plant water requirement. Planting trees will substantially increase water scarcity and possible dispossession (green water grab) especially in dryland regions of Africa and Oceania. Moreover, the combination of tree restoration and irrigation expansion to rainfed agricultural areas is expected to further exacerbate water scarcity, with about half of the global suitable areas for tree restoration experiencing water scarcity at least 7 months per year. Thus, the unavailability of water can overall limit climate change adaptation strategies. This article is part of the theme issue 'Ecological complexity and the biosphere: the next 30 years'.


Assuntos
Mudança Climática , Ecossistema , Florestas , Árvores , Clima Tropical , Água
3.
Nat Commun ; 13(1): 505, 2022 01 26.
Artigo em Inglês | MEDLINE | ID: mdl-35082300

RESUMO

The ongoing agrarian transition from smallholder farming to large-scale commercial agriculture promoted by transnational large-scale land acquisitions (LSLAs) often aims to increase crop yields through the expansion of irrigation. LSLAs are playing an increasingly prominent role in this transition. Yet it remains unknown whether foreign LSLAs by agribusinesses target areas based on specific hydrological conditions and whether these investments compete with the water needs of existing local users. Here we combine process-based crop and hydrological modelling, agricultural statistics, and georeferenced information on individual transnational LSLAs to evaluate emergence of water scarcity associated with LSLAs. While conditions of blue water scarcity already existed prior to land acquisitions, these deals substantially exacerbate blue water scarcity through both the adoption of water-intensive crops and the expansion of irrigated cultivation. These effects lead to new rival water uses in 105 of the 160 studied LSLAs (67% of the acquired land). Combined with our findings that investors target land with preferential access to surface and groundwater resources to support irrigation, this suggests that LSLAs often appropriate water resources to the detriment of local users.

4.
Sci Total Environ ; 810: 152037, 2022 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-34861300

RESUMO

The mining industry of the Democratic Republic of the Congo (DRC) represents the most important sector of the country's economy, and the DRC belongs to the world top five diamond producers. Artisanal small-scale mining (ASM) of alluvial diamonds represents an important source of alternative income for subsistence farmers, but it also leads to several socio-environmental impacts: deforestation, river pollution, water resources exploitation, unhealthy, unregulated and sometimes dangerous work environments. We perform a data-driven comprehensive analysis of the impact of the diamond mining industry on natural resources and assess the potential relevance of these resources to the DRC food system. To this end, we evaluate land and water resources consumption associated with diamond mining from 2001 to 2018, cross-referencing high-resolution data on mines, land use and tree cover, and using a dynamic and spatially distributed agro-hydrological model. We leverage disaggregated agrological data to provide alternative resources allocation scenarios, and use subnational development indicators and spatially explicit conflict data to frame our analysis within the socio-economic context. We find that, despite the richness in natural resources of the DRC, the impact of diamond mining is relevant because of its effects on ecology, economy, and society. Resources and efforts currently put into the mining industry may have the potential to alleviate the malnourishment crisis in DRC if diverted towards the construction of a more structured and resilient food system. Phenomena such as the illicit trafficking of diamonds and their use to finance wars contribute to nullify the potential of mining as an alternative source of income for subsistence farmers.


Assuntos
Diamante , Mineração , República Democrática do Congo , Rios , Recursos Hídricos
6.
Nat Commun ; 12(1): 2319, 2021 04 19.
Artigo em Inglês | MEDLINE | ID: mdl-33875657

RESUMO

The ongoing agrarian transition from small-holder farming to large-scale commercial agriculture is reshaping systems of production and human well-being in many regions. A fundamental part of this global transition is manifested in large-scale land acquisitions (LSLAs) by agribusinesses. Its energy implications, however, remain poorly understood. Here, we assess the multi-dimensional changes in fossil-fuel-based energy demand resulting from this agrarian transition. We focus on LSLAs by comparing two scenarios of low-input and high-input agricultural practices, exemplifying systems of production in place before and after the agrarian transition. A shift to high-input crop production requires industrial fertilizer application, mechanization of farming practices and irrigation, which increases by ~5 times fossil-fuel-based energy consumption compared to low-input agriculture. Given the high energy and carbon footprints of LSLAs and concerns over local energy access, our analysis highlights the need for an approach that prioritizes local resource access and incorporates energy-intensity analyses in land use governance.

7.
Proc Natl Acad Sci U S A ; 118(4)2021 01 26.
Artigo em Inglês | MEDLINE | ID: mdl-33468655

RESUMO

Foreign investors have acquired approximately 90 million hectares of land for agriculture over the past two decades. The effects of these investments on local food security remain unknown. While additional cropland and intensified agriculture could potentially increase crop production, preferential targeting of prime agricultural land and transitions toward export-bound crops might affect local access to nutritious foods. We test these hypotheses in a global systematic analysis of the food security implications of existing land concessions. We combine agricultural, remote sensing, and household survey data (available in 11 sub-Saharan African countries) with georeferenced information on 160 land acquisitions in 39 countries. We find that the intended changes in cultivated crop types generally imply transitions toward energy-rich, but nutrient-poor, crops that are predominantly destined for export markets. Specific impacts on food production and access vary substantially across regions. Deals likely have little effect on food security in eastern Europe and Latin America, where they predominantly occur within agricultural areas with current export-oriented crops, and where agriculture would have both expanded and intensified regardless of the land deals. This contrasts with Asia and sub-Saharan Africa, where deals are associated with both an expansion and intensification (in Asia) of crop production. Deals in these regions also shift production away from local staples and coincide with a gradually decreasing dietary diversity among the surveyed households in sub-Saharan Africa. Together, these findings point to a paradox, where land deals can simultaneously increase crop production and threaten local food security.


Assuntos
Comércio/estatística & dados numéricos , Produção Agrícola/economia , Produtos Agrícolas/economia , Segurança Alimentar/economia , Abastecimento de Alimentos/economia , África Subsaariana , Ásia , Produção Agrícola/ética , Europa Oriental , Segurança Alimentar/ética , Abastecimento de Alimentos/ética , Humanos , América Latina , Modelos Estatísticos
8.
Nat Food ; 2(6): 442-447, 2021 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-37118229

RESUMO

India is the world's largest consumer and importer of palm oil. In an aggressive push towards self-sufficiency in vegetable oils, the Indian government is prioritizing the rapid expansion of domestic oil palm plantations to meet an expected doubling in palm oil consumption in the next 15 years. Yet the current expansion of oil palm in India is occurring at the expense of biodiversity-rich landscapes. Using a spatially explicit model, we show that at the national scale India appears to have viable options to satisfy its projected national demand for palm oil without compromising either its biodiversity or its food security. At finer spatial scales, India's oil palm expansion needs to incorporate region-specific contingencies and account for trade-offs between biodiversity conservation, climate change, agricultural inputs and economic and social security. The policy decisions that India takes with respect to oil palm can substantially reduce future pressures to convert forests to oil palm plantations in the tropics globally.

9.
Proc Natl Acad Sci U S A ; 117(47): 29526-29534, 2020 11 24.
Artigo em Inglês | MEDLINE | ID: mdl-33168728

RESUMO

Climate change is expected to affect crop production worldwide, particularly in rain-fed agricultural regions. It is still unknown how irrigation water needs will change in a warmer planet and where freshwater will be locally available to expand irrigation without depleting freshwater resources. Here, we identify the rain-fed cropping systems that hold the greatest potential for investment in irrigation expansion because water will likely be available to suffice irrigation water demand. Using projections of renewable water availability and irrigation water demand under warming scenarios, we identify target regions where irrigation expansion may sustain crop production under climate change. Our results also show that global rain-fed croplands hold significant potential for sustainable irrigation expansion and that different irrigation strategies have different irrigation expansion potentials. Under a 3 °C warming, we find that a soft-path irrigation expansion with small monthly water storage and deficit irrigation has the potential to expand irrigated land by 70 million hectares and feed 300 million more people globally. We also find that a hard-path irrigation expansion with large annual water storage can sustainably expand irrigation up to 350 million hectares, while producing food for 1.4 billion more people globally. By identifying where irrigation can be expanded under a warmer climate, this work may serve as a starting point for investigating socioeconomic factors of irrigation expansion and may guide future research and resources toward those agricultural communities and water management institutions that will most need to adapt to climate change.


Assuntos
Irrigação Agrícola/métodos , Agricultura/métodos , Mudança Climática , Clima , Produção Agrícola/métodos , Chuva , Água/química , Abastecimento de Água
10.
Sci Data ; 7(1): 273, 2020 08 18.
Artigo em Inglês | MEDLINE | ID: mdl-32811838

RESUMO

Accurately assessing green and blue water requirements from croplands is fundamental to promote sustainable water management. In the last decade, global hydrological models have provided important insights into global patterns of water requirements for crop production. As important as these models are, they do not provide monthly crop-specific and year-specific data of green and blue water requirements. Gridded crop-specific products are therefore needed to better understand the spatial and temporal evolution of water demand. Here, we present a global gridded database of monthly crop-specific green (rain-fed) and blue (irrigated) water requirements for 23 main crops and 3 crop groups obtained using our WATNEEDS model. For the time periods in which our dataset matched, these estimates are validated against existing global products and satellite based datasets of evapotranspiration. The data are publicly available and can be used by practitioners in the water-energy-food nexus to assess the water sustainability of our food and energy systems at multiple spatial (local to global) and temporal (seasonal to multi-year) scales.

11.
Proc Natl Acad Sci U S A ; 117(36): 21985-21993, 2020 09 08.
Artigo em Inglês | MEDLINE | ID: mdl-32839335

RESUMO

Major environmental functions and human needs critically depend on water. In regions of the world affected by water scarcity economic activities can be constrained by water availability, leading to competition both among sectors and between human uses and environmental needs. While the commodification of water remains a contentious political issue, the valuation of this natural resource is sometime viewed as a strategy to avoid water waste. Likewise, water markets have been invoked as a mechanism to allocate water to economically most efficient uses. The value of water, however, remains difficult to estimate because water markets and market prices exist only in few regions of the world. Despite numerous attempts at estimating the value of water in the absence of markets (i.e., the "shadow price"), a global spatially explicit assessment of the value of water in agriculture is still missing. Here we propose a data-parsimonious biophysical framework to determine the value generated by water in irrigated agriculture and highlight its global spatiotemporal patterns. We find that in much of the world the actual crop distribution does not maximize agricultural water value.


Assuntos
Irrigação Agrícola/economia , Água/metabolismo , Conservação dos Recursos Naturais/economia , Produtos Agrícolas/economia , Produtos Agrícolas/crescimento & desenvolvimento , Produtos Agrícolas/metabolismo , Abastecimento de Água/economia
12.
Sci Adv ; 6(18): eaaz6031, 2020 05.
Artigo em Inglês | MEDLINE | ID: mdl-32494678

RESUMO

Water scarcity raises major concerns on the sustainable future of humanity and the conservation of important ecosystem functions. To meet the increasing food demand without expanding cultivated areas, agriculture will likely need to introduce irrigation in croplands that are currently rain-fed but where enough water would be available for irrigation. "Agricultural economic water scarcity" is, here, defined as lack of irrigation due to limited institutional and economic capacity instead of hydrologic constraints. To date, the location and productivity potential of economically water scarce croplands remain unknown. We develop a monthly agrohydrological analysis to map agricultural regions affected by agricultural economic water scarcity. We find these regions account for up to 25% of the global croplands, mostly across Sub-Saharan Africa, Eastern Europe, and Central Asia. Sustainable irrigation of economically water scarce croplands could feed an additional 840 million people while preventing further aggravation of blue water scarcity.

13.
Sci Adv ; 4(7): eaao1108, 2018 07.
Artigo em Inglês | MEDLINE | ID: mdl-29978036

RESUMO

Humanity faces the grand challenge of feeding a growing, more affluent population in the coming decades while reducing the environmental burden of agriculture. Approaches that integrate food security and environmental goals offer promise for achieving a more sustainable global food system, yet little work has been done to link potential solutions with agricultural policies. Taking the case of cereal production in India, we use a process-based crop water model and government data on food production and nutrient content to assess the implications of various crop-shifting scenarios on consumptive water demand and nutrient production. We find that historical growth in wheat production during the rabi (non-monsoon) season has been the main driver of the country's increased consumptive irrigation water demand and that rice is the least water-efficient cereal for the production of key nutrients, especially for iron, zinc, and fiber. By replacing rice areas in each district with the alternative cereal (maize, finger millet, pearl millet, or sorghum) with the lowest irrigation (blue) water footprint (WFP), we show that it is possible to reduce irrigation water demand by 33% and improve the production of protein (+1%), iron (+27%), and zinc (+13%) with only a modest reduction in calories. Replacing rice areas with the lowest total (rainfall + irrigation) WFP alternative cereal or the cereal with the highest nutritional yield (metric tons of protein per hectare or kilograms of iron per hectare) yielded similar benefits. By adopting a similar multidimensional framework, India and other nations can identify food security solutions that can achieve multiple sustainability goals simultaneously.


Assuntos
Sorghum/crescimento & desenvolvimento , Triticum/crescimento & desenvolvimento , Abastecimento de Água , Zea mays/crescimento & desenvolvimento , Produtos Agrícolas , Abastecimento de Alimentos , Índia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...