Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 47
Filtrar
2.
Neurobiol Aging ; 123: 23-34, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36630756

RESUMO

Currently, little is known about the impact of aging on astrocytes in substantia nigra pars compacta (SNpc), where dopaminergic neurons degenerate both in physiological aging and in Parkinson's disease, an age-related neurodegenerative disorder. We performed a morphometric analysis of GFAP+ astrocytes in SNpc and, for comparison, in the pars reticulata (SNpr) of young (4-6 months), middle-aged (14-17 months) and old (20-24 months) C57BL/6J male mice. We demonstrated an age-dependent increase of structural complexity only in astrocytes localized in SNpc, and not in SNpr. Astrocytic structural remodelling was not accompanied by changes in GFAP expression, while GFAP increased in SNpr of old compared to young mice. In parallel, transcript levels of selected astrocyte-enriched genes were evaluated. With aging, decreased GLT1 expression occurred only in SNpc, while xCT transcript increased both in SNpc and SNpr, suggesting a potential loss of homeostatic control of extracellular glutamate only in the subregion where age-dependent neurodegeneration occurs. Altogether, our results support an heterogenous morphological and biomolecular response to aging of GFAP+ astrocytes in SNpc and SNpr.


Assuntos
Parte Compacta da Substância Negra , Parte Reticular da Substância Negra , Camundongos , Masculino , Animais , Substância Negra/metabolismo , Astrócitos/metabolismo , Camundongos Endogâmicos C57BL , Envelhecimento/genética
3.
Sci Rep ; 11(1): 21499, 2021 11 02.
Artigo em Inglês | MEDLINE | ID: mdl-34728755

RESUMO

Adolescence represents a crucial period for maturation of brain structures involved in cognition. Early in life unhealthy dietary patterns are associated with inferior cognitive outcomes at later ages; conversely, healthy diet is associated with better cognitive results. In this study we analyzed the effects of a short period of hypercaloric diet on newborn hippocampal doublecortin+ (DCX) immature neurons in adolescent mice. Male mice received high fat diet (HFD) or control low fat diet (LFD) from the 5th week of age for 1 or 2 weeks, or 1 week HFD followed by 1 week LFD. After diet supply, mice were either perfused for immunohistochemical (IHC) analysis or their hippocampi were dissected for biochemical assays. Detailed morphometric analysis was performed in DCX+ cells that displayed features of immature neurons. We report that 1 week-HFD was sufficient to dramatically reduce dendritic tree complexity of DCX+ cells. This effect occurred specifically in dorsal and not ventral hippocampus and correlated with reduced BDNF expression levels in dorsal hippocampus. Both structural and biochemical changes were reversed by a return to LFD. Altogether these studies increase our current knowledge on potential consequences of hypercaloric diet on brain and in particular on dorsal hippocampal neuroplasticity.


Assuntos
Dieta Hiperlipídica/efeitos adversos , Proteína Duplacortina/metabolismo , Hipocampo/patologia , Células-Tronco Neurais/patologia , Neurogênese , Plasticidade Neuronal , Neurônios/patologia , Animais , Peso Corporal , Hipocampo/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Células-Tronco Neurais/metabolismo , Neurônios/metabolismo
4.
Sci Rep ; 11(1): 17373, 2021 08 30.
Artigo em Inglês | MEDLINE | ID: mdl-34462492

RESUMO

Advanced glycation endproducts (AGEs) are involved in several diseases, including NAFLD and NASH. RAGE is the main receptor mediating the pro-inflammatory signalling induced by AGEs. Therefore, targeting of RAGE has been proposed for prevention of chronic inflammatory diseases. However, the role of RAGE in the development of NAFLD and NASH remains poorly understood. We thus aimed to analyse the effect of obesity on AGEs accumulation, AGE-receptors and AGE-detoxification, and whether the absence of RAGE might improve hepatosteatosis and inflammation, by comparing the liver of lean control, obese (LeptrDb-/-) and obese RAGE-deficient (RAGE-/- LeptrDb-/-) mice. Obesity induced AGEs accumulation and RAGE expression with hepatosteatosis and inflammation in LeptrDb-/-, compared to lean controls. Despite the genetic deletion of RAGE in the LeptrDb-/- mice, high levels of intrahepatic AGEs were maintained accompanied by decreased expression of the protective AGE-receptor-1, impaired AGE-detoxifying system glyoxalase-1, and increased expression of the alternative AGE-receptor galectin-3. We also found sustained hepatosteatosis and inflammation as determined by persistent activation of the lipogenic SREBP1c and proinflammatory NLRP3 signalling pathways. Thus, RAGE targeting is not effective in the prevention of NAFLD in conditions of obesity, likely due to the direct liver specific crosstalk of RAGE with other AGE-receptors and AGE-detoxifying systems.


Assuntos
Hepatopatia Gordurosa não Alcoólica/metabolismo , Hepatopatia Gordurosa não Alcoólica/prevenção & controle , Receptor para Produtos Finais de Glicação Avançada/genética , Receptor para Produtos Finais de Glicação Avançada/fisiologia , Tecido Adiposo/metabolismo , Animais , Feminino , Deleção de Genes , Inflamassomos , Inflamação/metabolismo , Lipídeos/química , Fígado/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Obesos , Receptores Imunológicos/metabolismo , Transdução de Sinais
5.
Cell Mol Neurobiol ; 41(3): 591-603, 2021 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-32447613

RESUMO

Type 2 diabetes (T2D) hampers recovery after stroke, but the underling mechanisms are mostly unknown. In a recently published study (Pintana et al. in Clin Sci (Lond) 133(13):1367-1386, 2019), we showed that impaired recovery in T2D was associated with persistent atrophy of parvalbumin+ interneurons in the damaged striatum. In the current work, which is an extension of the abovementioned study, we investigated whether somatostatin (SOM)+ interneurons are also affected by T2D during the stroke recovery phase. C57Bl/6j mice were fed with high-fat diet or standard diet (SD) for 12 months and subjected to 30-min transient middle cerebral artery occlusion (tMCAO). SOM+ cell number/density in the striatum was assessed by immunohistochemistry 2 and 6 weeks after tMCAO in peri-infarct and infarct areas. This was possible by establishing a computer-based quantification method that compensates the post-stroke tissue deformation and the irregular cell distribution. SOM+ interneurons largely survived the stroke as seen at 2 weeks. Remarkably, 6 weeks after stroke, the number of SOM+ interneurons increased (vs. contralateral striatum) in SD-fed mice in both peri-infarct and infarct areas. However, this increase did not result from neurogenesis. T2D completely abolished this effect specifically in the in the infarct area. The results suggest that the up-regulation of SOM expression in the post-stroke phase could be related to neurological recovery and T2D could inhibit this process. We also present a new and precise method for cell counting in the stroke-damaged striatum that allows to reveal accurate, area-related effects of stroke on cell number.


Assuntos
Diabetes Mellitus Tipo 2/patologia , Diabetes Mellitus Tipo 2/fisiopatologia , Inibição Neural , Neurônios/patologia , Recuperação de Função Fisiológica , Somatostatina/metabolismo , Acidente Vascular Cerebral/patologia , Acidente Vascular Cerebral/fisiopatologia , Animais , Infarto da Artéria Cerebral Média/complicações , Interneurônios/patologia , Masculino , Camundongos Endogâmicos C57BL , Neostriado/patologia , Neostriado/fisiopatologia , Neurogênese , Neuroglia/metabolismo , Neurônios/metabolismo
6.
Ann Surg ; 273(5): 1012-1021, 2021 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-31188196

RESUMO

OBJECTIVE: To evaluate the potential changes in the plasma levels of resolvin D1 (RvD1) in patients with trauma and hemorrhage. Having found that trauma results in a profound reduction in plasma RvD1 in patients, we have then investigated the effects of RvD1 on the organ injury and dysfunction associated with hemorrhagic shock (HS) in the rat. BACKGROUND: HS is a common cause of death in trauma due to excessive systemic inflammation and multiple organ failure. RvD1 is a member of the resolvin family of pro-resolution mediators. METHODS: Blood samples were drawn from critically injured patients (n = 27, ACITII-prospective observational cohort study) within 2 hours of injury for targeted liquid chromatography tandem mass spectrometry. HS rats (removal of blood to reduce arterial pressure to 30 ±â€Š2 mm Hg, 90 minutes, followed by resuscitation) were treated with RvD1 (0.3 or 1 µg/kg intravenous (i.v.)) or vehicle (n = 7). Parameters of organ injury and dysfunction were determined. RESULTS: Plasma levels of RvD1 (mg/dL) were reduced in patients with trauma+HS (0.17 ±â€Š0.08) when compared with healthy volunteers (0.76 ±â€Š0.25) and trauma patients (0.62 ±â€Š0.20). In rats with HS, RvD1 attenuated the kidney dysfunction, liver injury, and tissue ischemia. RvD1 also reduced activation of the nuclear factor (NF)-κB pathway and reduced the expression of pro-inflammatory proteins such as inducible nitric oxide synthase, tumor necrosis factor-α, interleukin-1ß, and interleukin-6. CONCLUSION: Plasma RvD1 is reduced in patients with trauma-HS. In rats with HS, administration of synthetic RvD1 on resuscitation attenuated the multiple organ failure associated with HS by a mechanism that involves inhibition of the activation of NF-κB.


Assuntos
Ácidos Docosa-Hexaenoicos/farmacologia , Insuficiência de Múltiplos Órgãos/tratamento farmacológico , Choque Hemorrágico/tratamento farmacológico , Animais , Biomarcadores/sangue , Citocinas/sangue , Modelos Animais de Doenças , Imuno-Histoquímica , Masculino , Insuficiência de Múltiplos Órgãos/sangue , Insuficiência de Múltiplos Órgãos/etiologia , Ratos , Ratos Wistar , Choque Hemorrágico/sangue , Choque Hemorrágico/complicações
7.
Nutrients ; 12(9)2020 Aug 19.
Artigo em Inglês | MEDLINE | ID: mdl-32824970

RESUMO

Heat-processed diets contain high amounts of advanced glycation end products (AGEs). Here we explore the impact of an AGE-enriched diet on markers of metabolic and inflammatory disorders as well as on gut microbiota composition and plasma proteins glycosylation pattern. C57BL/6 mice were allocated into control diet (CD, n = 15) and AGE-enriched diet (AGE-D, n = 15) for 22 weeks. AGE-D was prepared replacing casein by methylglyoxal hydroimidazolone-modified casein. AGE-D evoked increased insulin and a significant reduction of GIP/GLP-1 incretins and ghrelin plasma levels, altered glucose tolerance, and impaired insulin signaling transduction in the skeletal muscle. Moreover, AGE-D modified the systemic glycosylation profile, as analyzed by lectin microarray, and increased Nε-carboxymethyllysine immunoreactivity and AGEs receptor levels in ileum and submandibular glands. These effects were associated to increased systemic levels of cytokines and impaired gut microbial composition and homeostasis. Significant correlations were recorded between changes in bacterial population and in incretins and inflammatory markers levels. Overall, our data indicates that chronic exposure to dietary AGEs lead to a significant unbalance in incretins axis, markers of metabolic inflammation, and a reshape of both the intestinal microbiota and plasma protein glycosylation profile, suggesting intriguing pathological mechanisms underlying AGEs-induced metabolic derangements.


Assuntos
Dieta , Microbioma Gastrointestinal , Produtos Finais de Glicação Avançada/efeitos adversos , Produtos Finais de Glicação Avançada/metabolismo , Inflamação/etiologia , Inflamação/metabolismo , Doenças Metabólicas/etiologia , Doenças Metabólicas/metabolismo , Animais , Citocinas/metabolismo , Grelina/metabolismo , Peptídeo 1 Semelhante ao Glucagon/metabolismo , Glucose/metabolismo , Glicosilação , Mediadores da Inflamação/metabolismo , Insulina/metabolismo , Camundongos Endogâmicos C57BL , Músculo Esquelético/metabolismo , Transdução de Sinais
8.
Oxid Med Cell Longev ; 2020: 9219825, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32832010

RESUMO

Inhibition of either P2Y12 receptor or the nucleotide-binding oligomerization domain- (NOD-) like receptor pyrin domain containing 3 (NLRP3) inflammasome provides cardioprotective effects. Here, we investigate whether direct NLRP3 inflammasome inhibition exerts additive effects on myocardial protection induced by the P2Y12 receptor antagonist Ticagrelor. Ticagrelor (150 mg/kg) was orally administered to rats for three consecutive days. Then, isolated hearts underwent an ischemia/reperfusion (30 min ischemia/60 min reperfusion; IR) protocol. The selective NLRP3 inflammasome inhibitor INF (50 µM) was infused before the IR protocol to the hearts from untreated animals or pretreated with Ticagrelor. In parallel experiments, the hearts isolated from untreated animals were perfused with Ticagrelor (3.70 µM) before ischemia and subjected to IR. The hearts of animals pretreated with Ticagrelor showed a significantly reduced infarct size (IS, 49 ± 3% of area at risk, AAR) when compared to control IR group (69 ± 2% of AAR). Similarly, ex vivo administration of INF before the IR injury resulted in significant IS reduction (38 ± 3% of AAR). Myocardial IR induced the NLRP3 inflammasome complex formation, which was attenuated by either INF pretreatment ex vivo, or by repeated oral treatment with Ticagrelor. The beneficial effects induced by either treatment were associated with the protective Reperfusion Injury Salvage Kinase (RISK) pathway activation and redox defence upregulation. In contrast, no protective effects nor NLRP3/RISK modulation were recorded when Ticagrelor was administered before ischemia in isolated heart, indicating that Ticagrelor direct target is not in the myocardium. Our results confirm that Ticagrelor conditioning effects are likely mediated through platelets, but are not additives to the ones achieved by directly inhibiting NLRP3.


Assuntos
Inflamassomos/metabolismo , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Inibidores da Agregação Plaquetária/uso terapêutico , Ticagrelor/uso terapêutico , Animais , Humanos , Masculino , Oxirredução , Inibidores da Agregação Plaquetária/farmacologia , Ratos , Ratos Wistar , Ticagrelor/farmacologia
9.
Br J Pharmacol ; 177(19): 4416-4432, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-32608058

RESUMO

BACKGROUND AND PURPOSE: There are no medications currently available to treat metabolic inflammation. Bruton's tyrosine kinase (BTK) is highly expressed in monocytes and macrophages and regulates NF-κB and NLRP3 inflammasome activity; both propagate metabolic inflammation in diet-induced obesity. EXPERIMENTAL APPROACH: Using an in vivo model of chronic inflammation, high-fat diet (HFD) feeding, in male C57BL/6J mice and in vitro assays in primary murine and human macrophages, we investigated if ibrutinib, an FDA approved BTK inhibitor, may represent a novel anti-inflammatory medication to treat metabolic inflammation. KEY RESULTS: HFD-feeding was associated with increased BTK expression and activation, which was significantly correlated with monocyte/macrophage accumulation in the liver, adipose tissue, and kidney. Ibrutinib treatment to HFD-fed mice inhibited the activation of BTK and reduced monocyte/macrophage recruitment to the liver, adipose tissue, and kidney. Ibrutinib treatment to HFD-fed mice decreased the activation of NF-κB and the NLRP3 inflammasome. As a result, ibrutinib treated mice fed HFD had improved glycaemic control through restored signalling by the IRS-1/Akt/GSK-3ß pathway, protecting mice against the development of hepatosteatosis and proteinuria. We show that BTK regulates NF-κB and the NLRP3 inflammasome specifically in primary murine and human macrophages, the in vivo cellular target of ibrutinib. CONCLUSION AND IMPLICATIONS: We provide "proof of concept" evidence that BTK is a novel therapeutic target for the treatment of diet-induced metabolic inflammation and ibrutinib may be a candidate for drug repurposing as an anti-inflammatory agent for the treatment of metabolic inflammation in T2D and microvascular disease.


Assuntos
Inflamassomos , NF-kappa B , Animais , Glicogênio Sintase Quinase 3 beta , Inflamação/tratamento farmacológico , Macrófagos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Proteína 3 que Contém Domínio de Pirina da Família NLR
10.
Mol Metab ; 39: 101009, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32413585

RESUMO

OBJECTIVE: Recent evidence suggests the substantial pathogenic role of the Janus kinase (JAK)/signal transducer and activator of transcription (STAT) pathway in the development of low-grade chronic inflammatory response, known as "metaflammation," which contributes to obesity and type 2 diabetes. In this study, we investigated the effects of the JAK1/2 inhibitor baricitinib, recently approved for the treatment of rheumatoid arthritis, in a murine high-fat-high sugar diet model. METHODS: Male C57BL/6 mice were fed with a control normal diet (ND) or a high-fat-high sugar diet (HD) for 22 weeks. A sub-group of HD fed mice was treated with baricitinib (10 mg/kg die, p.o.) for the last 16 weeks (HD + Bar). RESULTS: HD feeding resulted in obesity, insulin-resistance, hypercholesterolemia and alterations in gut microbial composition. The metabolic abnormalities were dramatically reduced by chronic baricitinib administration. Treatment of HD mice with baricitinib did not change the diet-induced alterations in the gut, but restored insulin signaling in the liver and skeletal muscle, resulting in improvements of diet-induced myosteatosis, mesangial expansion and associated proteinuria. The skeletal muscle and renal protection were due to inhibition of the local JAK2-STAT2 pathway by baricitinib. We also demonstrated that restored tissue levels of JAK2-STAT2 activity were associated with a significant reduction in cytokine levels in the blood. CONCLUSIONS: In summary, our data suggest that the JAK2-STAT2 pathway may represent a novel candidate for the treatment of diet-related metabolic derangements, with the potential for EMA- and FDA-approved JAK inhibitors to be repurposed for the treatment of type 2 diabetes and/or its complications.


Assuntos
Azetidinas/farmacologia , Dieta Hiperlipídica/efeitos adversos , Inibidores de Janus Quinases/farmacologia , Doenças Metabólicas/etiologia , Doenças Metabólicas/metabolismo , Purinas/farmacologia , Pirazóis/farmacologia , Sulfonamidas/farmacologia , Animais , Anti-Inflamatórios/farmacologia , Biomarcadores , Modelos Animais de Doenças , Metabolismo Energético/efeitos dos fármacos , Microbioma Gastrointestinal/efeitos dos fármacos , Glucose/metabolismo , Imuno-Histoquímica , Inflamação/tratamento farmacológico , Inflamação/etiologia , Inflamação/metabolismo , Insulina/metabolismo , Janus Quinase 2/metabolismo , Masculino , Doenças Metabólicas/diagnóstico , Doenças Metabólicas/tratamento farmacológico , Camundongos , Músculo Esquelético/diagnóstico por imagem , Músculo Esquelético/efeitos dos fármacos , Músculo Esquelético/metabolismo , Fatores de Transcrição STAT/metabolismo , Transdução de Sinais/efeitos dos fármacos
11.
JCI Insight ; 5(8)2020 04 23.
Artigo em Inglês | MEDLINE | ID: mdl-32213712

RESUMO

Septic cardiomyopathy is a life-threatening organ dysfunction caused by sepsis. Ribonuclease 1 (RNase 1) belongs to a group of host-defense peptides that specifically cleave extracellular RNA (eRNA). The activity of RNase 1 is inhibited by ribonuclease-inhibitor 1 (RNH1). However, the role of RNase 1 in septic cardiomyopathy and associated cardiac apoptosis is completely unknown. Here, we show that sepsis resulted in a significant increase in RNH1 and eRNA serum levels compared with those of healthy subjects. Treatment with RNase 1 resulted in a significant decrease of apoptosis, induced by the intrinsic pathway, and TNF expression in murine cardiomyocytes exposed to either necrotic cardiomyocytes or serum of septic patients for 16 hours. Additionally, treatment of septic mice with RNase 1 resulted in a reduction in cardiac apoptosis, TNF expression, and septic cardiomyopathy. These data demonstrate that eRNA plays a crucial role in the pathophysiology of the organ (cardiac) dysfunction in sepsis and that RNase and RNH1 may be new therapeutic targets and/or strategies to reduce the cardiac injury and dysfunction caused by sepsis.


Assuntos
Cardiomiopatias/metabolismo , Ácidos Nucleicos Livres/metabolismo , Ribonuclease Pancreático/metabolismo , Sepse/metabolismo , Animais , Apoptose/fisiologia , Cardiomiopatias/etiologia , Proteínas de Transporte/metabolismo , Modelos Animais de Doenças , Feminino , Humanos , Masculino , Camundongos , Proteínas/metabolismo , Sepse/complicações
12.
Front Immunol ; 10: 2129, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31552054

RESUMO

Sepsis is one of the most prevalent diseases in the world. The development of cardiac dysfunction in sepsis results in an increase of mortality. It is known that Bruton's tyrosine kinase (BTK) plays a role in toll-like receptor signaling and NLRP3 inflammasome activation, two key components in the pathophysiology of sepsis and sepsis-associated cardiac dysfunction. In this study we investigated whether pharmacological inhibition of BTK (ibrutinib 30 mg/kg and acalabrutinib 3 mg/kg) attenuates sepsis associated cardiac dysfunction in mice. 10-week old male C57BL/6 mice underwent CLP or sham surgery. One hour after surgery mice received either vehicle (5% DMSO + 30% cyclodextrin i.v.), ibrutinib (30 mg/kg i.v.), or acalabrutinib (3 mg/kg i.v.). Mice also received antibiotics and an analgesic at 6 and 18 h. After 24 h, cardiac function was assessed by echocardiography in vivo. Cardiac tissue underwent western blot analysis to determine the activation of BTK, NLRP3 inflammasome and NF-κB pathway. Serum analysis of 33 cytokines was conducted by a multiplex assay. When compared to sham-operated animals, mice subjected to CLP demonstrated a significant reduction in ejection fraction (EF), fractional shortening (FS), and fractional area change (FAC). The cardiac tissue from CLP mice showed significant increases of BTK, NF-κB, and NLRP3 inflammasome activation. CLP animals resulted in a significant increase of serum cytokines and chemokines (TNF-α, IL-6, IFN-γ, KC, eotaxin-1, eotaxin-2, IL-10, IL-4, CXCL10, and CXCL11). Delayed administration of ibrutinib and acalabrutinib attenuated the decline of EF, FS, and FAC caused by CLP and also reduced the activation of BTK, NF-κB, and NLRP3 inflammasome. Both ibrutinib and acalabrutinib significantly suppressed the release of cytokines and chemokines. Our study revealed that delayed intravenous administration of ibrutinib or acalabrutinib attenuated the cardiac dysfunction associated with sepsis by inhibiting BTK, reducing NF-κB activation and the activation of the inflammasome. Cytokines associated with sepsis were significantly reduced by both BTK inhibitors. Acalabrutinib is found to be more potent than ibrutinib and could potentially prove to be a novel therapeutic in sepsis. Thus, the FDA-approved BTK inhibitors ibrutinib and acalabrutinib may be repurposed for the use in sepsis.


Assuntos
Tirosina Quinase da Agamaglobulinemia/metabolismo , Cardiopatias/etiologia , Coração/efeitos dos fármacos , Inibidores de Proteínas Quinases/farmacologia , Sepse/complicações , Adenina/análogos & derivados , Tirosina Quinase da Agamaglobulinemia/efeitos dos fármacos , Tirosina Quinase da Agamaglobulinemia/imunologia , Animais , Benzamidas/farmacologia , Ceco , Modelos Animais de Doenças , Inflamassomos/efeitos dos fármacos , Inflamassomos/imunologia , Inflamassomos/metabolismo , Ligadura , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Piperidinas , Punções , Pirazinas/farmacologia , Pirazóis/farmacologia , Pirimidinas/farmacologia , Sepse/imunologia , Sepse/metabolismo
13.
Clin Sci (Lond) ; 133(13): 1367-1386, 2019 07 15.
Artigo em Inglês | MEDLINE | ID: mdl-31235555

RESUMO

Type 2 diabetes (T2D) hampers stroke recovery though largely undetermined mechanisms. Few preclinical studies have investigated the effect of genetic/toxin-induced diabetes on long-term stroke recovery. However, the effects of obesity-induced T2D are mostly unknown. We aimed to investigate whether obesity-induced T2D worsens long-term stroke recovery through the impairment of brain's self-repair mechanisms - stroke-induced neurogenesis and parvalbumin (PV)+ interneurons-mediated neuroplasticity. To mimic obesity-induced T2D in the middle-age, C57bl/6j mice were fed 12 months with high-fat diet (HFD) and subjected to transient middle cerebral artery occlusion (tMCAO). We evaluated neurological recovery by upper-limb grip strength at 1 and 6 weeks after tMCAO. Gray and white matter damage, stroke-induced neurogenesis, and survival and potential atrophy of PV-interneurons were quantitated by immunohistochemistry (IHC) at 2 and 6 weeks after tMCAO. Obesity/T2D impaired neurological function without exacerbating brain damage. Moreover, obesity/T2D diminished stroke-induced neural stem cell (NSC) proliferation and neuroblast formation in striatum and hippocampus at 2 weeks after tMCAO and abolished stroke-induced neurogenesis in hippocampus at 6 weeks. Finally, stroke resulted in the atrophy of surviving PV-interneurons 2 weeks after stroke in both non-diabetic and obese/T2D mice. However, after 6 weeks, this effect selectively persisted in obese/T2D mice. We show in a preclinical setting of clinical relevance that obesity/T2D impairs neurological functions in the stroke recovery phase in correlation with reduced neurogenesis and persistent atrophy of PV-interneurons, suggesting impaired neuroplasticity. These findings shed light on the mechanisms behind impaired stroke recovery in T2D and could facilitate the development of new stroke rehabilitative strategies for obese/T2D patients.


Assuntos
Encéfalo/fisiopatologia , Diabetes Mellitus Tipo 2/etiologia , Infarto da Artéria Cerebral Média/complicações , Interneurônios/patologia , Degeneração Neural , Neurogênese , Obesidade/complicações , Parvalbuminas/metabolismo , Fatores Etários , Animais , Atrofia , Encéfalo/metabolismo , Encéfalo/patologia , Diabetes Mellitus Tipo 2/metabolismo , Diabetes Mellitus Tipo 2/fisiopatologia , Modelos Animais de Doenças , Infarto da Artéria Cerebral Média/metabolismo , Infarto da Artéria Cerebral Média/patologia , Infarto da Artéria Cerebral Média/fisiopatologia , Interneurônios/metabolismo , Masculino , Camundongos Endogâmicos C57BL , Atividade Motora , Inibição Neural , Recuperação de Função Fisiológica , Transdução de Sinais , Ácido gama-Aminobutírico/metabolismo
14.
Front Immunol ; 10: 571, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30972066

RESUMO

Annexin A1 (ANXA1) is an endogenously produced anti-inflammatory protein, which plays an important role in the pathophysiology of diseases associated with chronic inflammation. We demonstrate that patients with type-2 diabetes have increased plasma levels of ANXA1 when compared to normoglycemic subjects. Plasma ANXA1 positively correlated with fatty liver index and elevated plasma cholesterol in patients with type-2 diabetes, suggesting a link between aberrant lipid handling, and ANXA1. Using a murine model of high fat diet (HFD)-induced insulin resistance, we then investigated (a) the role of endogenous ANXA1 in the pathophysiology of HFD-induced insulin resistance using ANXA1-/- mice, and (b) the potential use of hrANXA1 as a new therapeutic approach for experimental diabetes and its microvascular complications. We demonstrate that: (1) ANXA1-/- mice fed a HFD have a more severe diabetic phenotype (e.g., more severe dyslipidemia, insulin resistance, hepatosteatosis, and proteinuria) compared to WT mice fed a HFD; (2) treatment of WT-mice fed a HFD with hrANXA1 attenuated the development of insulin resistance, hepatosteatosis and proteinuria. We demonstrate here for the first time that ANXA1-/- mice have constitutively activated RhoA. Interestingly, diabetic mice, which have reduced tissue expression of ANXA1, also have activated RhoA. Treatment of HFD-mice with hrANXA1 restored tissue levels of ANXA1 and inhibited RhoA activity, which, in turn, resulted in restoration of the activities of Akt, GSK-3ß and endothelial nitric oxide synthase (eNOS) secondary to re-sensitization of IRS-1 signaling. We further demonstrate in human hepatocytes that ANXA1 protects against excessive mitochondrial proton leak by activating FPR2 under hyperglycaemic conditions. In summary, our data suggest that (a) ANXA1 is a key regulator of RhoA activity, which restores IRS-1 signal transduction and (b) recombinant human ANXA1 may represent a novel candidate for the treatment of T2D and/or its complications.


Assuntos
Anexina A1/genética , Anexina A1/metabolismo , Diabetes Mellitus Experimental/fisiopatologia , Diabetes Mellitus Tipo 2/fisiopatologia , Proteína rhoA de Ligação ao GTP/metabolismo , Animais , Anexina A1/sangue , Colesterol/sangue , Diabetes Mellitus Experimental/terapia , Diabetes Mellitus Tipo 2/terapia , Dieta Hiperlipídica/efeitos adversos , Dislipidemias/fisiopatologia , Fígado Gorduroso/sangue , Fígado Gorduroso/patologia , Humanos , Hiperglicemia/fisiopatologia , Proteínas Substratos do Receptor de Insulina/metabolismo , Resistência à Insulina/fisiologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Obesidade/fisiopatologia , Receptores de Formil Peptídeo/metabolismo , Receptores de Lipoxinas/metabolismo
15.
Oxid Med Cell Longev ; 2018: 5042428, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30327714

RESUMO

BACKGROUND: D-tagatose is an isomer of fructose and is ~90% as sweet as sucrose with less caloric value. Nowadays, D-tagatose is used as a nutritive or low-calorie sweetener. Despite clinical findings suggesting that D-tagatose could be beneficial in subjects with type 2 diabetes, there are no experimental data comparing D-tagatose with fructose, in terms of metabolic derangements and related molecular mechanisms evoked by chronic exposure to these two monosaccharides. MATERIALS AND METHODS: C57Bl/6j mice were fed with a control diet plus water (CD), a control diet plus 30% fructose syrup (L-Fr), a 30% fructose solid diet plus water (S-Fr), a control diet plus 30% D-tagatose syrup (L-Tg), or a 30% D-tagatose solid diet plus water (S-Tg), during 24 weeks. RESULTS: Both solid and liquid fructose feeding led to increased body weight, abnormal systemic glucose homeostasis, and an altered lipid profile. These effects were associated with vigorous increase in oxidative markers. None of these metabolic abnormalities were detected when mice were fed with both the solid and liquid D-tagatose diets, either at the systemic or at the local level. Interestingly, both fructose formulations led to significant Advanced Glycation End Products (AGEs) accumulation in mouse hearts, as well as a robust increase in both myocardial AGE receptor (RAGE) expression and NF-κB activation. In contrast, no toxicological effects were shown in hearts of mice chronically exposed to liquid or solid D-tagatose. CONCLUSION: Our results clearly suggest that chronic overconsumption of D-tagatose in both formulations, liquid or solid, does not exert the same deleterious metabolic derangements evoked by fructose administration, due to differences in carbohydrate interference with selective proinflammatory and oxidative stress cascades.


Assuntos
Frutose/farmacologia , Hexoses/farmacologia , Miocárdio/metabolismo , Oxirredução/efeitos dos fármacos , Estresse Oxidativo/efeitos dos fármacos , Animais , Coração/efeitos dos fármacos , Masculino , Síndrome Metabólica/induzido quimicamente , Síndrome Metabólica/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Distribuição Aleatória , Transdução de Sinais/efeitos dos fármacos , Edulcorantes/farmacologia
16.
Front Immunol ; 9: 891, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29867926

RESUMO

Trauma is a leading cause of death worldwide with 5.8 million deaths occurring yearly. Almost 40% of trauma deaths are due to bleeding and occur in the first few hours after injury. Of the remaining severely injured patients up to 25% develop a dysregulated immune response leading to multiple organ dysfunction syndrome (MODS). Despite improvements in trauma care, the morbidity and mortality of this condition remains very high. Massive traumatic injury can overwhelm endogenous homeostatic mechanisms even with prompt treatment. The underlying mechanisms driving MODS are also not fully elucidated. As a result, successful therapies for trauma-related MODS are lacking. Trauma causes tissue damage that releases a large number of endogenous damage-associated molecular patterns (DAMPs). Mitochondrial DAMPs released in trauma, such as mitochondrial DNA (mtDNA), could help to explain part of the immune response in trauma given the structural similarities between mitochondria and bacteria. MtDNA, like bacterial DNA, contains an abundance of highly stimulatory unmethylated CpG DNA motifs that signal through toll-like receptor-9 to produce inflammation. MtDNA has been shown to be highly damaging when injected into healthy animals causing acute organ injury to develop. Elevated circulating levels of mtDNA have been reported in trauma patients but an association with clinically meaningful outcomes has not been established in a large cohort. We aimed to determine whether mtDNA released after clinical trauma hemorrhage is sufficient for the development of MODS. Secondly, we aimed to determine the extent of mtDNA release with varying degrees of tissue injury and hemorrhagic shock in a clinically relevant rodent model. Our final aim was to determine whether neutralizing mtDNA with the nucleic acid scavenging polymer, hexadimethrine bromide (HDMBr), at a clinically relevant time point in vivo would reduce the severity of organ injury in this model. CONCLUSIONS: We have shown that the release of mtDNA is sufficient for the development of multiple organ injury. MtDNA concentrations likely peak at different points in the early postinjury phase dependent on the degree of isolated trauma vs combined trauma and hemorrhagic shock. HDMBr scavenging of circulating mtDNA (and nuclear DNA, nDNA) is associated with rescue from severe multiple organ injury in the animal model. This suggests that HDMBr could have utility in rescue from human trauma-induced MODS.


Assuntos
DNA Bacteriano/imunologia , DNA Mitocondrial/imunologia , Brometo de Hexadimetrina/uso terapêutico , Insuficiência de Múltiplos Órgãos/tratamento farmacológico , Traumatismo Múltiplo/tratamento farmacológico , Choque Hemorrágico/tratamento farmacológico , Adulto , Idoso , Alarminas/imunologia , Alarminas/metabolismo , Animais , Estudos de Coortes , DNA Bacteriano/sangue , DNA Mitocondrial/sangue , Modelos Animais de Doenças , Feminino , Brometo de Hexadimetrina/farmacologia , Humanos , Masculino , Pessoa de Meia-Idade , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/imunologia , Mitocôndrias/metabolismo , Mitocôndrias/patologia , Insuficiência de Múltiplos Órgãos/imunologia , Insuficiência de Múltiplos Órgãos/mortalidade , Insuficiência de Múltiplos Órgãos/patologia , Traumatismo Múltiplo/imunologia , Traumatismo Múltiplo/mortalidade , Traumatismo Múltiplo/patologia , Estudos Prospectivos , Ratos Wistar , Choque Hemorrágico/imunologia , Choque Hemorrágico/mortalidade , Choque Hemorrágico/patologia , Índices de Gravidade do Trauma , Resultado do Tratamento , Adulto Jovem
17.
Cardiovasc Diabetol ; 17(1): 60, 2018 05 19.
Artigo em Inglês | MEDLINE | ID: mdl-29776406

RESUMO

BACKGROUND: Dipeptidyl peptidase-4 (DPP-4) inhibitors (gliptins) are approved drugs for the treatment of hyperglycemia in patients with type 2 diabetes. These effects are mainly mediated by inhibiting endogenous glucagon-like peptide-1 (GLP-1) cleavage. Interestingly, gliptins can also improve stroke outcome in rodents independently from GLP1. However, the underlying mechanisms are unknown. Stromal cell-derived factor-1α (SDF-1α) is a DPP-4 substrate and CXCR4 agonist promoting beneficial effects in injured brains. However, SDF-1α involvement in gliptin-mediated neuroprotection after ischemic injury is unproven. We aimed to determine whether the gliptin linagliptin improves stroke outcome via the SDF-1α/CXCR4 pathway, and identify additional effectors behind the efficacy. METHODS: Mice were subjected to stroke by transient middle cerebral artery occlusion (MCAO). linagliptin was administered for 3 days or 3 weeks from stroke onset. The CXCR4-antagonist AMD3100 was administered 1 day before MCAO until 3 days thereafter. Stroke outcome was assessed by measuring upper-limb function, infarct volume and neuronal survival. The plasma and brain levels of active GLP-1, GIP and SDF-1α were quantified by ELISA. To identify additional gliptin-mediated molecular effectors, brain samples were analyzed by mass spectrometry. RESULTS: Linagliptin specifically increased active SDF-1α but not glucose-dependent insulinotropic peptide (GIP) or GLP-1 brain levels. Blocking of SDF-1α/CXCR4 pathway abolished the positive effects of linagliptin on upper-limb function and histological outcome after stroke. Moreover, linagliptin treatment after stroke decreased the presence of peptides derived from neurogranin and from an isoform of the myelin basic protein. CONCLUSIONS: We showed that linagliptin improves functional stroke outcome in a SDF-1α/CXCR4-dependent manner. Considering that Calpain activity and intracellular Ca2+ regulate neurogranin and myelin basic protein detection, our data suggest a gliptin-mediated neuroprotective mechanism via the SDF-1α/CXCR4 pathway that could involve the regulation of Ca2+ homeostasis and the reduction of Calpain activity. These results provide new insights into restorative gliptin-mediated effects against stroke.


Assuntos
Encéfalo/efeitos dos fármacos , Quimiocina CXCL12/metabolismo , Dipeptidil Peptidase 4/metabolismo , Inibidores da Dipeptidil Peptidase IV/farmacologia , Infarto da Artéria Cerebral Média/tratamento farmacológico , Linagliptina/farmacologia , Fármacos Neuroprotetores/farmacologia , Receptores CXCR4/metabolismo , Animais , Encéfalo/enzimologia , Encéfalo/patologia , Encéfalo/fisiopatologia , Sinalização do Cálcio/efeitos dos fármacos , Modelos Animais de Doenças , Infarto da Artéria Cerebral Média/enzimologia , Infarto da Artéria Cerebral Média/patologia , Infarto da Artéria Cerebral Média/fisiopatologia , Masculino , Camundongos Endogâmicos C57BL , Atividade Motora/efeitos dos fármacos , Proteína Básica da Mielina/metabolismo , Recuperação de Função Fisiológica , Proteínas Repressoras/metabolismo
18.
J Nutr Biochem ; 55: 185-199, 2018 05.
Artigo em Inglês | MEDLINE | ID: mdl-29539590

RESUMO

Despite clinical findings suggesting that the form (liquid versus solid) of the sugars may significantly affect the development of metabolic diseases, no experimental data are available on the impact of their formulations on gut microbiota, integrity and hepatic outcomes. In the present sudy, C57Bl/6j mice were fed a standard diet plus water (SD), a standard diet plus 60% fructose syrup (L-Fr) or a 60% fructose solid diet plus water (S-Fr) for 12 weeks. Gut microbiota was characterized through 16S rRNA phylogenetic profiling and shotgun sequencing of microbial genes in ileum content and related volatilome profiling. Fructose feeding led to alterations of the gut microbiota depending on the fructose formulation, with increased colonization by Clostridium, Oscillospira and Clostridiales phyla in the S-Fr group and Bacteroides, Lactobacillus, Lachnospiraceae and Dorea in the L-Fr. S-Fr evoked the highest accumulation of advanced glycation end products and barrier injury in the ileum intestinal mucosa. These effects were associated to a stronger activation of the lipopolysaccharide-dependent proinflammatory TLR4/NLRP3 inflammasome pathway in the liver of S-Fr mice than of L-Fr mice. In contrast, L-Fr intake induced higher levels of hepatosteatosis and markers of fibrosis than S-Fr. Fructose-induced ex novo lipogenesis with production of SCFA and MCFA was confirmed by metagenomic analysis. These results suggest that consumption of fructose under different forms, liquid or solid, may differently affect gut microbiota, thus leading to impairment in intestinal mucosa integrity and liver homeostasis.


Assuntos
Frutose/química , Frutose/toxicidade , Microbioma Gastrointestinal/efeitos dos fármacos , Cirrose Hepática/induzido quimicamente , Animais , Fezes/química , Frutose/urina , Microbioma Gastrointestinal/genética , Microbioma Gastrointestinal/fisiologia , Transportador de Glucose Tipo 2/metabolismo , Produtos Finais de Glicação Avançada/metabolismo , Inflamassomos/metabolismo , Metabolismo dos Lipídeos/efeitos dos fármacos , Cirrose Hepática/metabolismo , Masculino , Metagenoma/efeitos dos fármacos , Camundongos Endogâmicos C57BL , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo
19.
Anal Bioanal Chem ; 410(11): 2723-2737, 2018 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-29516133

RESUMO

This study exploits the information potential of comprehensive two-dimensional gas chromatography configured with a parallel dual secondary column-dual detection by mass spectrometry and flame ionization (GC×2GC-MS/FID) to study changes in urinary metabolic signatures of mice subjected to high-fructose diets. Samples are taken from mice fed with normal or fructose-enriched diets provided either in aqueous solution or in solid form and analyzed at three stages of the dietary intervention (1, 6, and 12 weeks). Automated Untargeted and Targeted fingerprinting for 2D data elaboration is adopted for the most inclusive data mining of GC×GC patterns. The UT fingerprinting strategy performs a fully automated peak-region features fingerprinting and combines results from pre-targeted compounds and unknowns across the sample-set. The most informative metabolites, with statistically relevant differences between sample groups, are obtained by unsupervised multivariate analysis (MVA) and cross-validated by multi-factor analysis (MFA) with external standard quantitation by GC-MS. Results indicate coherent clustering of mice urine signatures according to dietary manipulation. Notably, the metabolite fingerprints of mice fed with liquid fructose exhibited greater derangement in fructose, glucose, citric, pyruvic, malic, malonic, gluconic, cis-aconitic, succinic and 2-keto glutaric acids, glycine acyl derivatives (N-carboxy glycine, N-butyrylglycine, N-isovaleroylglycine, N-phenylacetylglycine), and hippuric acid. Untargeted fingerprinting indicates some analytes which were not a priori pre-targeted which provide additional insights: N-acetyl glucosamine, N-acetyl glutamine, malonyl glycine, methyl malonyl glycine, and glutaric acid. Visual features fingerprinting is used to track individual variations during experiments, thereby extending the panorama of possible data elaboration tools. Graphical abstract ᅟ.


Assuntos
Açúcares da Dieta/metabolismo , Frutose/metabolismo , Metaboloma , Metabolômica/métodos , Urina/química , Animais , Açúcares da Dieta/urina , Frutose/urina , Cromatografia Gasosa-Espectrometria de Massas/métodos , Masculino , Camundongos , Camundongos Endogâmicos C57BL
20.
Acta Neuropathol Commun ; 6(1): 14, 2018 02 23.
Artigo em Inglês | MEDLINE | ID: mdl-29471869

RESUMO

Recent data suggest that olfactory deficits could represent an early marker and a pathogenic mechanism at the basis of cognitive decline in type 2 diabetes (T2D). However, research is needed to further characterize olfactory deficits in diabetes, their relation to cognitive decline and underlying mechanisms.The aim of this study was to determine whether T2D impairs odour detection, olfactory memory as well as neuroplasticity in two major brain areas responsible for olfaction and odour coding: the main olfactory bulb (MOB) and the piriform cortex (PC), respectively. Dipeptidyl peptidase-4 inhibitors (DPP-4i) are clinically used T2D drugs exerting also beneficial effects in the brain. Therefore, we aimed to determine whether DPP-4i could reverse the potentially detrimental effects of T2D on the olfactory system.Non-diabetic Wistar and T2D Goto-Kakizaki rats, untreated or treated for 16 weeks with the DPP-4i linagliptin, were employed. Odour detection and olfactory memory were assessed by using the block, the habituation-dishabituation and the buried pellet tests. We assessed neuroplasticity in the MOB by quantifying adult neurogenesis and GABAergic inhibitory interneurons positive for calbindin, parvalbumin and carletinin. In the PC, neuroplasticity was assessed by quantifying the same populations of interneurons and a newly identified form of olfactory neuroplasticity mediated by post-mitotic doublecortin (DCX) + immature neurons.We show that T2D dramatically reduced odour detection and olfactory memory. Moreover, T2D decreased neurogenesis in the MOB, impaired the differentiation of DCX+ immature neurons in the PC and altered GABAergic interneurons protein expression in both olfactory areas. DPP-4i did not improve odour detection and olfactory memory. However, it normalized T2D-induced effects on neuroplasticity.The results provide new knowledge on the detrimental effects of T2D on the olfactory system. This knowledge could constitute essentials for understanding the interplay between T2D and cognitive decline and for designing effective preventive therapies.


Assuntos
Diabetes Mellitus Experimental/tratamento farmacológico , Diabetes Mellitus Tipo 2/tratamento farmacológico , Inibidores da Dipeptidil Peptidase IV/farmacologia , Linagliptina/farmacologia , Nootrópicos/farmacologia , Percepção Olfatória/efeitos dos fármacos , Animais , Diabetes Mellitus Experimental/fisiopatologia , Diabetes Mellitus Experimental/psicologia , Diabetes Mellitus Tipo 2/patologia , Diabetes Mellitus Tipo 2/fisiopatologia , Diabetes Mellitus Tipo 2/psicologia , Dipeptidil Peptidase 4/metabolismo , Proteína Duplacortina , Neurônios GABAérgicos/efeitos dos fármacos , Neurônios GABAérgicos/patologia , Neurônios GABAérgicos/fisiologia , Interneurônios/efeitos dos fármacos , Interneurônios/patologia , Interneurônios/fisiologia , Masculino , Transtornos da Memória/tratamento farmacológico , Transtornos da Memória/patologia , Transtornos da Memória/fisiopatologia , Neurogênese/efeitos dos fármacos , Neurogênese/fisiologia , Plasticidade Neuronal/efeitos dos fármacos , Plasticidade Neuronal/fisiologia , Bulbo Olfatório/efeitos dos fármacos , Bulbo Olfatório/patologia , Bulbo Olfatório/fisiopatologia , Percepção Olfatória/fisiologia , Córtex Piriforme/efeitos dos fármacos , Córtex Piriforme/patologia , Córtex Piriforme/fisiopatologia , Ratos Wistar
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...