Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 50
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Plant Physiol ; 2024 Jun 03.
Artigo em Inglês | MEDLINE | ID: mdl-38828881

RESUMO

Plants recognize a variety of external signals and induce appropriate mechanisms to increase their tolerance to biotic and abiotic stresses. Precise recognition of attacking pathogens and induction of effective resistance mechanisms are critical functions for plant survival. Some molecular patterns unique to a certain group of microbes, microbe-associated molecular patterns (MAMPs), are sensed by plant cells as nonself molecules via pattern recognition receptors. While MAMPs of bacterial and fungal origin have been identified, reports on oomycete MAMPs are relatively limited. This study aimed to identify MAMPs from an oomycete pathogen Phytophthora infestans, the causal agent of potato late blight. Using reactive oxygen species (ROS) production and phytoalexin production in potato (Solanum tuberosum) as markers, two structurally different groups of elicitors, namely ceramides and diacylglycerols, were identified. P. infestans ceramides (Pi-Cer A, B, and D) induced ROS production, while diacylglycerol (Pi-DAG A and B), containing eicosapentaenoic acid (EPA) as a substructure, induced phytoalexins production in potato. The molecular patterns in Pi-Cers and Pi-DAGs essential for defense induction were identified as 9-methyl-4,8-sphingadienine (9Me-Spd) and 5,8,11,14-tetraene-type fatty acid (5,8,11,14-TEFA), respectively. These structures are not found in plants, but in oomycetes and fungi, indicating that they are microbe molecular patterns recognized by plants. When Arabidopsis (Arabidopsis thaliana) was treated with Pi-Cer D and EPA, partially overlapping but different sets of genes were induced. Furthermore, expression of some genes is upregulated only after the simultaneous treatment with Pi-Cer D and EPA, indicating that plants combine the signals from simultaneously recognized MAMPs to adapt their defense response to pathogens.

2.
Fungal Genet Biol ; 172: 103895, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38679292

RESUMO

Botrytis cinerea is a necrotrophic pathogen that infects across a broad range of plant hosts, including high-impact crop species. Its generalist necrotrophic behavior stems from its ability to detoxify structurally diverse phytoalexins. The current study aims to provide evidence of the ability of B. cinerea to tolerate the sesquiterpenoid phytoalexin rishitin, which is produced by potato and tomato. While the growth of potato pathogens Phytophthora infestans (late blight) and Alternaria solani (early blight) was severely inhibited by rishitin, B. cinerea was tolerant to rishitin. After incubation of rishitin with the mycelia of B. cinerea, it was metabolized to at least six oxidized forms. Structural analysis of these purified rishitin metabolites revealed a variety of oxidative metabolism including hydroxylation at C7 or C12, ketone formation at C5, and dihydroxylation at the 10,11-olefin. Six rishitin metabolites showed reduced toxicity to P. infestans and A. solani, indicating that B. cinerea has at least 5 distinct enzymatic reactions to detoxify rishitin. Four host-specialized phytopathogenic Botrytis species, namely B. elliptica, B. allii, B. squamosa, and B. tulipae also had at least a partial ability to metabolize rishitin as B. cinerea, but their metabolic capacity was significantly weaker than that of B. cinerea. These results suggest that the ability of B. cinerea to rapidly metabolize rishitin through multiple detoxification mechanisms could be critical for its pathogenicity in potato and tomato.


Assuntos
Botrytis , Fitoalexinas , Phytophthora infestans , Doenças das Plantas , Sesquiterpenos , Botrytis/metabolismo , Botrytis/genética , Botrytis/efeitos dos fármacos , Sesquiterpenos/metabolismo , Doenças das Plantas/microbiologia , Phytophthora infestans/metabolismo , Phytophthora infestans/genética , Phytophthora infestans/crescimento & desenvolvimento , Phytophthora infestans/efeitos dos fármacos , Solanum lycopersicum/microbiologia , Inativação Metabólica , Alternaria/metabolismo , Alternaria/genética , Redes e Vias Metabólicas , Solanum tuberosum/microbiologia
3.
J Gen Virol ; 105(4)2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38619867

RESUMO

Fusariviridae is a family of mono-segmented, positive-sense RNA viruses with genome sizes of 5.9-10.7 kb. Most genomic RNAs are bicistronic, but exceptions have up to four predicted ORFs. In bicistronic genomes, the 5'-proximal ORF codes for a single protein with both RNA-directed RNA polymerase (RdRP) and RNA helicase (Hel) domains; little is known about the protein encoded by the second ORF. Fusarivirids do not appear to form virions. This is a summary of the International Committee on Taxonomy of Viruses (ICTV) Report on the family Fusariviridae, which is available at ictv.global/report/fusariviridae.


Assuntos
Vírion , Vírus , Vírion/genética , Genômica , Fases de Leitura Aberta , RNA
4.
Plant Cell Physiol ; 65(6): 1050-1064, 2024 Jun 27.
Artigo em Inglês | MEDLINE | ID: mdl-38305573

RESUMO

In the genome of the heterocystous cyanobacterium Calothrix sp. NIES-4101 (NIES-4101), the four genes essential for nitrogen fixation (nifB, nifH, nifD and nifK) are highly fragmented into 13 parts in a 350-kb chromosomal region, and four of these parts are encoded in the reverse strand. Such a complex fragmentation feature makes it difficult to restore the intact nifBHDK genes by the excision mechanism found in the nifD gene of the Anabaena sp. PCC 7120 heterocyst. To examine the nitrogen-fixing ability of NIES-4101, we confirmed that NIES-4101 grew well on a combined nitrogen-free medium and showed high nitrogenase activity, which strongly suggested that the complete nifBHDK genes are restored by a complex recombination process in heterocysts. Next, we resequenced the genome prepared from cells grown under nitrogen-fixing conditions. Two contigs covering the complete nifHDK and nifB genes were found by de novo assembly of the sequencing reads. In addition, the DNA fragments covering the nifBHDK operon were successfully amplified by PCR. We propose that the process of nifBHDK restoration occurs as follows. First, the nifD-nifK genes are restored by four excision events. Then, the complete nifH and nifB genes are restored by two excision events followed by two successive inversion events between the inverted repeat sequences and one excision event, forming the functional nif gene cluster, nifB-fdxN-nifS-nifU-nifH-nifD-nifK. All genes coding recombinases responsible for these nine recombination events are located close to the terminal repeat sequences. The restoration of the nifBHDK genes in NIES-4101 is the most complex genome reorganization reported in heterocystous cyanobacteria.


Assuntos
Proteínas de Bactérias , Cianobactérias , Família Multigênica , Fixação de Nitrogênio , Recombinação Genética , Fixação de Nitrogênio/genética , Cianobactérias/genética , Cianobactérias/metabolismo , Recombinação Genética/genética , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Nitrogenase/metabolismo , Nitrogenase/genética , Genes Bacterianos
5.
Physiol Plant ; 175(5): e14052, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37882264

RESUMO

Basal plant immune responses are activated by the recognition of conserved microbe-associated molecular patterns (MAMPs), or breakdown molecules released from the plants after damage by pathogen penetration, so-called damage-associated molecular patterns (DAMPs). While chitin-oligosaccharide (CHOS), a primary component of fungal cell walls, is most known as MAMP, plant cell wall-derived oligosaccharides, cello-oligosaccharides (COS) from cellulose, and xylo-oligosaccharide (XOS) from hemicellulose are representative DAMPs. In this study, elicitor activities of COS prepared from cotton linters, XOS prepared from corn cobs, and chitin-oligosaccharide (CHOS) from crustacean shells were comparatively investigated. In Arabidopsis, COS, XOS, or CHOS treatment triggered typical defense responses such as reactive oxygen species (ROS) production, phosphorylation of MAP kinases, callose deposition, and activation of the defense-related transcription factor WRKY33 promoter. When COS, XOS, and CHOS were used at concentrations with similar activity in inducing ROS production and callose depositions, CHOS was particularly potent in activating the MAPK kinases and WRKY33 promoters. Among the COS and XOS with different degrees of polymerization, cellotriose and xylotetraose showed the highest activity for the activation of WRKY33 promoter. Gene ontology enrichment analysis of RNAseq data revealed that simultaneous treatment of COS, XOS, and CHOS (oligo-mix) effectively activates plant disease resistance. In practice, treatment with the oligo-mix enhanced the resistance of tomato to powdery mildew, but plant growth was not inhibited but rather tended to be promoted, providing evidence that treatment with the oligo-mix has beneficial effects on improving disease resistance in plants, making them a promising class of compounds for practical application.


Assuntos
Arabidopsis , Resistência à Doença , Espécies Reativas de Oxigênio/metabolismo , Plantas/metabolismo , Arabidopsis/metabolismo , Parede Celular/metabolismo , Oligossacarídeos/farmacologia , Oligossacarídeos/metabolismo , Quitina/farmacologia , Quitina/metabolismo , Doenças das Plantas/genética , Imunidade Vegetal
6.
Front Plant Sci ; 14: 1177060, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37332725

RESUMO

Botrytis cinerea, a plant pathogenic fungus with a wide host range, has reduced sensitivity to fungicides as well as phytoalexins, threatening cultivation of economically important fruits and vegetable crops worldwide. B. cinerea tolerates a wide array of phytoalexins, through efflux and/or enzymatic detoxification. Previously, we provided evidence that a distinctive set of genes were induced in B. cinerea when treated with different phytoalexins such as rishitin (produced by tomato and potato), capsidiol (tobacco and bell pepper) and resveratrol (grape and blueberry). In this study, we focused on the functional analyses of B. cinerea genes implicated in rishitin tolerance. LC/MS profiling revealed that B. cinerea can metabolize/detoxify rishitin into at least 4 oxidized forms. Heterologous expression of Bcin08g04910 and Bcin16g01490, two B. cinerea oxidoreductases upregulated by rishitin, in a plant symbiotic fungus Epichloë festucae revealed that these rishitin-induced enzymes are involved in the oxidation of rishitin. Expression of BcatrB, encoding an exporter of structurally unrelated phytoalexins and fungicides, was significantly upregulated by rishitin but not by capsidiol and was thus expected to be involved in the rishitin tolerance. Conidia of BcatrB KO (ΔbcatrB) showed enhanced sensitivity to rishitin, but not to capsidiol, despite their structural similarity. ΔbcatrB showed reduced virulence on tomato, but maintained full virulence on bell pepper, indicating that B. cinerea activates BcatrB by recognizing appropriate phytoalexins to utilize it in tolerance. Surveying 26 plant species across 13 families revealed that the BcatrB promoter is mainly activated during the infection of B. cinerea in plants belonging to the Solanaceae, Fabaceae and Brassicaceae. The BcatrB promoter was also activated by in vitro treatments of phytoalexins produced by members of these plant families, namely rishitin (Solanaceae), medicarpin and glyceollin (Fabaceae), as well as camalexin and brassinin (Brassicaceae). Consistently, ΔbcatrB showed reduced virulence on red clover, which produces medicarpin. These results suggest that B. cinerea distinguishes phytoalexins and induces differential expression of appropriate genes during the infection. Likewise, BcatrB plays a critical role in the strategy employed by B. cinerea to bypass the plant innate immune responses in a wide variety of important crops belonging to the Solanaceae, Brassicaceae and Fabaceae.

7.
J Gen Virol ; 104(5)2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-37192093

RESUMO

Hypoviridae is a family of capsidless viruses with positive-sense RNA genomes of 7.3-18.3 kb that possess either a single large open reading frame (ORF) or two ORFs. The ORFs appear to be translated from genomic RNA by non-canonical mechanisms, i.e. internal ribosome entry site- and stop/restart translation. This family includes the genera Alphahypovirus, Betahypovirus, Gammahypovirus, Deltahypovirus, Epsilonhypovirus, Zetahypovirus, Thetahypovirus and Etahypovirus. Hypovirids have been detected in ascomycetous and basidiomycetous filamentous fungi and are considered to replicate in host, Golgi apparatus-derived, lipid vesicles that contain virus dsRNA as the replicative form. Some hypovirids induce hypovirulence to host fungi, while others do not. This is a summary of the ICTV report on the family Hypoviridae, which is available at www.ictv.global/report/hypoviridae.


Assuntos
Ascomicetos , Vírus de RNA , Vírus , RNA Viral/genética , Genoma Viral , Vírus de RNA/genética , Vírus/genética , Replicação Viral
8.
Microbiol Resour Announc ; 12(6): e0025923, 2023 Jun 20.
Artigo em Inglês | MEDLINE | ID: mdl-37219420

RESUMO

Neofusicoccum parvum is a polyxenous phytopathogenic fungus that infects important fruits, such as grapes and mangoes. Here, we report the genome sequences of N. parvum strains that were isolated from mango in Okinawa, Japan (strain PPO83), and an invasive weed (rice-paper plant [Tetrapanax papyrifer]) in Nagoya, Japan (strain NSSI1).

9.
Plants (Basel) ; 12(5)2023 Mar 02.
Artigo em Inglês | MEDLINE | ID: mdl-36903990

RESUMO

Anthracnose caused by Colletotrichum spp. is one of the major problems in mango production worldwide, including Thailand. All mango cultivars are susceptible, but Nam Dok Mai See Thong (NDMST) is the most vulnerable. Through a single spore isolation method, a total of 37 isolates of Colletotrichum spp. were obtained from NDMST showing anthracnose symptoms. Identification was performed using a combination of morphology characteristics, Koch's postulates, and phylogenetic analysis. The pathogenicity assay and Koch's postulates on leaves and fruit confirmed that all Colletotrichum spp. tested were causal agents of mango anthracnose. Multilocus analysis using DNA sequences of internal transcribed spacer (ITS) regions, ß-tubulin (TUB2), actin (ACT), and chitin synthase (CHS-1) was performed for molecular identification. Two concatenated phylogenetic trees were constructed using either two-loci of ITS and TUB2, or four-loci of ITS, TUB2, ACT, and CHS-1. Both phylogenetic trees were indistinguishable and showed that these 37 isolates belong to C. acutatum, C. asianum, C. gloeosporioides, and C. siamense. Our results indicated that using at least two loci of ITS and TUB2, were sufficient to infer Colletotrichum species complexes. Of 37 isolates, C. gloeosporioides was the most dominant species (19 isolates), followed by C. asianum (10 isolates), C. acutatum (5 isolates), and C. siamense (3 isolates). In Thailand, C. gloeosporioides and C. acutatum have been reported to cause anthracnose in mango, however, this is the first report of C. asianum and C. siamense associated with mango anthracnose in central Thailand.

10.
J Gen Virol ; 104(1)2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36748490

RESUMO

The family Hadakaviridae, including the genus Hadakavirus, accommodates capsidless viruses with a 10- or 11-segmented positive-sense (+) RNA genome. Currently known hosts are ascomycetous filamentous fungi. Although phylogenetically related to polymycovirids with a segmented double-stranded RNA genome and certain encapsidated picorna-like viruses, hadakavirids are distinct in their lack of a capsid ('hadaka' means naked in Japanese) and their consequent inability to be pelleted by conventional ultracentrifugation; they show ribonuclease susceptibility in host tissue homogenates. This is a summary of the International Committee on Taxonomy of Viruses (ICTV) Report on the family Hadakaviridae, which is available at ictv.global/report/hadakaviridae.


Assuntos
Ascomicetos , Vírus de RNA , Vírus , Vírus de RNA/genética , Genoma Viral , Vírus/genética , Proteínas do Capsídeo/genética , Replicação Viral , Vírion/genética
11.
Microbiol Resour Announc ; 11(7): e0125021, 2022 Jul 21.
Artigo em Inglês | MEDLINE | ID: mdl-35652634

RESUMO

Fusarium langsethiae is a suspected plant-pathogenic fungus causing cereal contamination with trichothecene mycotoxins. Here, we report the genome sequences of two F. langsethiae strains, MFG217701 (a prototroph) and MFG217702 (a biotin auxotroph), isolated from a grain of oat harvested in Russia.

12.
PNAS Nexus ; 1(5): pgac274, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-36712336

RESUMO

The gray mold pathogen Botrytis cinerea has a broad host range, causing disease in >400 plant species, but it is not known how this pathogen evolved this polyxenous nature. Botrytis cinerea can metabolize a wide range of phytoalexins, including the stilbenoid resveratrol in grape, and the sesquiterpenoids capsidiol in tobacco and rishitin in potato and tomato. In this study, we analyzed the metabolism of sesquiterpenoid phytoalexins by B. cinerea. Capsidiol was dehydrogenated to capsenone, which was then further oxidized, while rishitin was directly oxidized to epoxy- or hydroxyrishitins, indicating that B. cinerea has separate mechanisms to detoxify structurally similar sesquiterpenoid phytoalexins. RNA-seq analysis revealed that a distinct set of genes were induced in B. cinerea when treated with capsidiol or rishitin, suggesting that B. cinerea can distinguish structurally similar phytoalexins to activate appropriate detoxification mechanisms. The gene most highly upregulated by capsidiol treatment encoded a dehydrogenase, designated Bccpdh. Heterologous expression of Bccpdh in a capsidiol-sensitive plant symbiotic fungus, Epichloë festucae, resulted in an acquired tolerance of capsidiol and the ability to metabolize capsidiol to capsenone, while B. cinerea Δbccpdh mutants became relatively sensitive to capsidiol. The Δbccpdh mutant showed reduced virulence on the capsidiol producing Nicotiana and Capsicum species but remained fully pathogenic on potato and tomato. Homologs of Bccpdh are found in taxonomically distant Ascomycota fungi but not in related Leotiomycetes species, suggesting that B. cinerea acquired the ancestral Bccpdh by horizontal gene transfer, thereby extending the pathogenic host range of this polyxenous pathogen to capsidiol-producing plant species.

13.
Viruses ; 13(11)2021 11 12.
Artigo em Inglês | MEDLINE | ID: mdl-34835075

RESUMO

Partitiviruses are one of the most prevalent double-stranded RNA viruses that have been identified mostly in filamentous fungi and plants. Partitiviruses generally infect host fungi asymptomatically but infrequently exert significant effect(s) on morphology and virulence, thus being considered a potential source of biological control agents against pathogenic fungi. In this study, we performed a screening for mycoviruses of a collection of Thai isolates of rice fungal pathogen Rhizoctonia oryzae-sativae, a causal agent of rice aggregated sheath spot disease. As a result, 36% of tested isolates carried potentially viral double-stranded RNAs with sizes ranging from 2 to 3 kbp. By conventional cDNA library construction and RNA-seq, we determined six new alphapartitiviruses that infected three isolates: tentatively named Rhizoctonia oryzae-sativae partitivirus 1 to 6 (RosPV1-6). Furthermore, RT-PCR detection of each virus revealed their omnipresent nature in different R. oryzae-sativae isolates. Although virus-curing of basidiomycetous fungi is generally difficult, our repeated attempts successfully obtained virus-free (for RosPV1, RosPV2, and uncharacterized partitiviruses), isogenic strain of R. oryzae-sativae TSS190442. The virus-cured strain showed slightly faster colony growth on the synthetic media and severe symptom development on the rice sheath compared to its virus-infected counterpart. Overall, this study shed light on the distribution of partitiviruses in R. oryzae-sativae in a paddy environment and exemplified a virus-curing protocol that may be applicable for other basidiomycetous fungi.


Assuntos
Basidiomycota/virologia , Vírus de RNA de Cadeia Dupla/isolamento & purificação , Micovírus/isolamento & purificação , Oryza/microbiologia , Doenças das Plantas/microbiologia , Sequência de Aminoácidos , Basidiomycota/isolamento & purificação , Basidiomycota/patogenicidade , Vírus de RNA de Cadeia Dupla/classificação , Vírus de RNA de Cadeia Dupla/genética , Micovírus/classificação , Micovírus/genética , Genoma Viral/genética , Filogenia , RNA Viral/genética , Tailândia , Proteínas Virais/genética , Virulência
14.
Front Microbiol ; 12: 641484, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33927702

RESUMO

An increasing number of viruses are continuously being found in a wide range of organisms, including fungi. Recent studies have revealed a wide viral diversity in microbes and a potential importance of these viruses in the natural environment. Although virus exploration has been accelerated by short-read, high-throughput sequencing (HTS), and viral de novo sequencing is still challenging because of several biological/molecular features such as micro-diversity and secondary structure of RNA genomes. This study conducted de novo sequencing of multiple double-stranded (ds) RNA (dsRNA) elements that were obtained from fungal viruses infecting two Fusarium sambucinum strains, FA1837 and FA2242, using conventional HTS and long-read direct RNA sequencing (DRS). De novo assembly of the read data from both technologies generated near-entire genomic sequence of the viruses, and the sequence homology search and phylogenetic analysis suggested that these represented novel species of the Hypoviridae, Totiviridae, and Mitoviridae families. However, the DRS-based consensus sequences contained numerous indel errors that differed from the HTS consensus sequences, and these errors hampered accurate open reading frame (ORF) prediction. Although with its present performance, the use of DRS is premature to determine viral genome sequences, the DRS-mediated sequencing shows great potential as a user-friendly platform for a one-shot, whole-genome sequencing of RNA viruses due to its long-reading ability and relative structure-tolerant nature.

15.
Pathogens ; 10(2)2021 Feb 04.
Artigo em Inglês | MEDLINE | ID: mdl-33557226

RESUMO

Rice orange leaf phytoplasma (ROLP) causes clear orange to yellowish leaf discoloration and severe stunting in rice seedlings. The ecological and biological characteristics of ROLP are largely unknown because the disease has not widely caused serious problems in rice cultivated areas, thereby leading to the low accumulation of research data. However, in the past decade, the disease became a threat to rice production, particularly in South China and India; it has also been recognised in other Asian countries, such as Vietnam, Thailand and the Philippines. Here, we observed the occurrence of ROLP in paddies of the Southeast Asian counties (Cambodia, Vietnam and the Philippines) and found that the isolates in the Philippines and Vietnam were monophyletic, while those in India, Thailand and Cambodia were more diverse, suggesting their potential origins. In Cambodia, it was revealed that following polymerase chain reaction (PCR) detection, the known ROLP-insect vectors, N. virescens Distant and Recilia dorsalis Motchulsky, were ROLP-positive, indicating their roles in pathogen dispersal. Moreover, fluorescent and scanning electron microscopy revealed the intensive accumulation of the phytoplasma in phloem tissues and massive accumulation of storage starch in vascular bundle sheath and parenchyma. Altogether, this study illustrated the genetic variability of global ROLP isolates and the pathogen's biological impact on rice tissue.

16.
Virology ; 554: 55-65, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-33383414

RESUMO

Cryphonectria nitschkei chrysovirus 1 (CnCV1), was described earlier from an ascomycetous fungus, Cryphonectria nitschkei strain OB5/11, collected in Japan; its partial sequence was reported a decade ago. Complete sequencing of the four genomic dsRNA segments revealed molecular features similar to but distinct from previously reported members of the family Chrysoviridae. Unique features include the presence of a mini-cistron preceding the major large open reading frame in each genomic segment. Common features include the presence of CAA repeats in the 5'-untranslated regions and conserved terminal sequences. CnCV1-OB5/11 could be laterally transferred to C. nitschkei and its relatives C. radicalis and C. naterciae via coculturing, virion transfection and protoplast fusion, but not to fungal species other than the three species mentioned above, even within the genus Cryphonectria, suggesting a very narrow host range. Phenotypic comparison of a few sets of CnCV1-infected and -free isogenic strains showed symptomless infection in new hosts.


Assuntos
Ascomicetos/virologia , Vírus de RNA de Cadeia Dupla/fisiologia , Micovírus/fisiologia , Especificidade de Hospedeiro , Regiões 5' não Traduzidas , Vírus de RNA de Cadeia Dupla/genética , Vírus de RNA de Cadeia Dupla/ultraestrutura , Micovírus/genética , Micovírus/ultraestrutura , Genoma Viral , Filogenia , RNA de Cadeia Dupla/genética , RNA Viral/genética , Análise de Sequência de RNA , Transfecção
17.
Front Plant Sci ; 12: 821574, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-35154216

RESUMO

Plants recognize molecular patterns unique to a certain group of microbes to induce effective resistance mechanisms. Elicitins are secretory proteins produced by plant pathogenic oomycete genera including Phytophthora and Pythium. Treatment of INF1 (an elicitin produced by P. infestans) induces a series of defense responses in Nicotiana species, including reactive oxygen species (ROS) production, transient induction of ethylene production, hypersensitive cell death and accumulation of the sesquiterpenoid phytoalexin capsidiol. In this study, we analyzed the expression profiles of N. benthamiana genes after INF1 treatment by RNAseq analysis. Based on their expression patterns, N. benthamiana genes were categorized into 20 clusters and 4,761 (8.3%) out of 57,140 genes were assigned to the clusters for INF1-induced genes. All genes encoding enzymes dedicated to capsidiol production, 5-epi-aristolochene (EA) synthase (NbEAS, 10 copies) and EA dehydrogenase (NbEAH, 6 copies), and some genes for ethylene production, such as 1-aminocyclopropane 1-carboxylate (ACC) synthase (NbACS) and ACC oxidase (NbACO), were significantly upregulated by INF1 treatment. Analysis of NbEAS1 and NbEAS4 promoters revealed that AGACGCC (GCC box-like motif) is the essential cis-element required for INF1-induced expression of NbEAS genes. Given that the GCC box is known to be targeted by ERF (ethylene-responsive factor) transcription factors, we created a complete list of N. benthamiana genes encoding AP2/ERF family transcription factors, and identified 45 out of 337 AP2/ERF genes in the clusters for INF1-induced genes. Among INF1-induced NbERF genes, silencing of NbERF-IX-33 compromised resistance against P. infestans and INF1-induced production of capsidiol. Recombinant NbERF-IX-33 protein can bind to the promoter sequence of NbEAS4, suggesting that NbERF-IX-33 is a transcription factor directly regulating the expression of genes for phytoalexin production.

18.
Pathogens ; 9(12)2020 Nov 26.
Artigo em Inglês | MEDLINE | ID: mdl-33256154

RESUMO

Rice orange leaf phytoplasma (ROLP) belongs to the "Candidatus Phytoplasma asteris" 16SrI-B subgroup, which is solely transmitted by the zigzag-striped leafhopper (Recilia dorsalis Motchulsky) and the green leafhopper (Nephotettix cincticeps Uhler) (Hemiptera: Cicadellidae). Recently, rice plants showing orange leaf discoloration have become ubiquitous in several paddies of two provinces in the Philippines. In total of 98 symptomatic rice plants, 82% (Laguna) and 95% (Mindanao) were ROLP-positive by nested PCR detection. These plants showed more varying symptoms than previously reported. The vector insect R. dorsalis was scarcely present but green paddy leafhopper, N. virescens Distant (Hemiptera: Cicadellidae), was commonly observed in the paddies, thus the ability of N. virescens to transmit ROLP was thoroughly investigated. Newly emerged adult N. virescens, which fed on ROLD-source rice plants, were used to inoculate a susceptible rice seedling and was serially transferred into a new healthy seedling. Resultant positive transmission rates varied from 5.1% to 17.8%. The transmission ability of the insects was generally decreased over time. These findings suggest that N. virescens is an alternative vector of ROLP in the Philippines. Altogether, this study highlighted the increasing importance of ROLD-reemergence in Southeast and East Asia and proved the need for careful management of this alternative vector insect.

19.
Toxins (Basel) ; 12(6)2020 06 16.
Artigo em Inglês | MEDLINE | ID: mdl-32560237

RESUMO

Fusarium head blight (FHB) of cereals is a severe disease caused by the Fusarium graminearum species complex. It leads to the accumulation of the mycotoxin deoxynivalenol (DON) in grains and other plant tissues and causes substantial economic losses throughout the world. DON is one of the most troublesome mycotoxins because it is a virulence factor to host plants, including wheat, and exhibits toxicity to plants and animals. To control both FHB and DON accumulation, a biological control approach using DON-degrading bacteria (DDBs) is promising. Here, we performed a disease control assay using an in vitro petri dish test composed of germinated wheat seeds inoculated with F. graminearum (Fg) and DDBs. Determination of both grown leaf lengths and hyphal lesion lengths as a measure of disease severity showed that the inoculation of seeds with the DDBs Devosia sp. strain NKJ1 and Nocardioides spp. strains SS3 or SS4 were protective against the leaf growth inhibition caused by Fg. Furthermore, it was as effective against DON accumulation. The inoculation with strains SS3 or SS4 also reduced the inhibitory effect on leaves treated with 10 µg mL-1 DON solution (without Fg). These results indicate that the DDBs partially suppress the disease by degrading DON.


Assuntos
Grão Comestível/microbiologia , Fusarium/metabolismo , Nocardioides/metabolismo , Controle Biológico de Vetores , Doenças das Plantas/prevenção & controle , Tricotecenos/metabolismo , Triticum/microbiologia , Germinação , Doenças das Plantas/microbiologia , Folhas de Planta/microbiologia , Sementes/microbiologia
20.
Virology ; 533: 125-136, 2019 07.
Artigo em Inglês | MEDLINE | ID: mdl-31153047

RESUMO

There is still limited information on the diversity of (-)ssRNA viruses that infect fungi. Here, we have discovered two novel (-)ssRNA mycoviruses in the shiitake mushroom (Lentinula edodes). The first virus has a monopartite RNA genome and relates to that of mymonaviruses (Mononegavirales), especially to Hubei rhabdo-like virus 4 from arthropods and thus designated as Lentinula edodes negative-strand RNA virus 1. The second virus has a putative bipartite RNA genome and is related to the recently discovered bipartite or tripartite phenui-like viruses (Bunyavirales) associated with plants and ticks, and designated as Lentinula edodes negative-strand RNA virus 2 (LeNSRV2). LeNSRV2 is likely the first segmented (-)ssRNA virus known to infect fungi. Its smaller RNA segment encodes a putative nucleocapsid and a plant MP-like protein using a potential ambisense coding strategy. These findings enhance our understanding of the diversity, evolution and spread of (-)ssRNA viruses in fungi.


Assuntos
Micovírus/isolamento & purificação , Vírus de RNA/isolamento & purificação , Cogumelos Shiitake/virologia , Sequência de Bases , Micovírus/genética , Filogenia , Vírus de RNA/classificação , Vírus de RNA/genética , RNA Viral/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...