Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Surg Neurol Int ; 12: 325, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34345466

RESUMO

BACKGROUND: Intraparenchymal brain abscess is a collection of microbes caused by inoculation through direct extension or hematogenous spread. Although rare, intraparenchymal abscesses are potentially fatal and can be detected when patients are symptomatic due to local mass effect on adjacent neural tissue. Brain abscess treatment includes medical management with appropriate antibiotics alone or medical management in combination with surgical debridement. Treatment strategies depend on the size and location of disease, as well as the virulence of the microorganism. Similar to medical management strategies, surgical strategies among providers are not uniform, with variation in approaches from complete extirpation of the abscess, including the abscess wall, to minimally invasive stereotactic needle aspiration. In particular, for children, there are no guidelines for therapy. CASE DESCRIPTION: We report a case of giant Actinomycosis right frontal brain abscess in an immunocompetent child without risk factors. A review of the literature for the treatment of brain abscess caused very rarely by Actinomyces in children is performed. CONCLUSION: Successful treatment of brain access depends on organism and location. The even more uncommon giant intraparenchymal abscesses can be managed with minimal access and prolonged antibiosis, especially when slow-growing organisms are identified. Long-term follow-up should be employed to mitigate missed late failures.

2.
World Neurosurg ; 121: 217-221, 2019 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-30347302

RESUMO

BACKGROUND: Trigeminal neuralgia (TN) is a well-recognized facial pain syndrome. Discrete forms with disparate pain symptoms include classic and atypical. However, atypical facial pain includes neuralgiform pain along a spectrum. Most cases of TN are diagnosed in the adult population. Case reports and series of children have presented TN as a similar entity, with treatment similar to that for adults. We reviewed the pertinent data and present 2 pediatric TN cases successfully treated with microvascular decompression (MVD). CASE DESCRIPTION: Two pediatric patients (age 12 and 15 years) with TN refractory to previous medical therapy were identified. Both patients were deemed appropriate surgical candidates and underwent MVD to manage their TN. TN compression was arterial in both cases and involved portions of the anterior inferior cerebellar artery. Patient 1 was pain free 6 months after the procedure. Patient 2 was pain free immediately after the procedure and had been weaned off preoperative symptomatic management at the latest follow-up visit. The most recent follow-up examination was 12 and 8 months for patients 1 and 2, respectively, with both experiencing continued freedom from pain. CONCLUSIONS: Few studies have reported on the effectiveness of MVD in the pediatric population for the management of TN. The supporting data and our 2 cases have demonstrated that MVD is effective for pediatric patients to treat their TN. Furthermore, the side effects appear to be minimal, with excellent pain relief after MVD in this patient population.


Assuntos
Cirurgia de Descompressão Microvascular , Neuralgia do Trigêmeo/cirurgia , Adolescente , Criança , Dor Facial/diagnóstico por imagem , Dor Facial/cirurgia , Feminino , Humanos , Neuralgia do Trigêmeo/diagnóstico por imagem
3.
Cell Discov ; 3: 17039, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-29736257

RESUMO

The mechanistic target of rapamycin (mTOR) signaling pathway plays a central role in aging and a number of different disease states. Rapamycin, which suppresses activity of the mTOR complex 1 (mTORC1), shows preclinical (and sometimes clinical) efficacy in a number of disease models. Among these are Lmna-/- mice, which serve as a mouse model for dystrophy-associated laminopathies. To confirm that elevated mTORC1 signaling is responsible for the pathology manifested in Lmna-/- mice and to decipher downstream genetic mechanisms underlying the benefits of rapamycin, we tested in Lmna-/- mice whether survival could be extended and disease pathology suppressed either by reduced levels of S6K1 or enhanced levels of 4E-BP1, two canonical mTORC1 substrates. Global heterozygosity for S6K1 ubiquitously extended lifespan of Lmna-/- mice (Lmna-/-S6K1+/- mice). This life extension is due to improving muscle, but not heart or adipose, function, consistent with the observation that genetic ablation of S6K1 specifically in muscle tissue also extended survival of Lmna-/- mice. In contrast, whole-body overexpression of 4E-BP1 shortened the survival of Lmna-/- mice, likely by accelerating lipolysis. Thus, rapamycin-mediated lifespan extension in Lmna-/- mice is in part due to the improvement of skeletal muscle function and can be phenocopied by reduced S6K1 activity, but not 4E-BP1 activation.

4.
Cell Rep ; 17(10): 2542-2552, 2016 12 06.
Artigo em Inglês | MEDLINE | ID: mdl-27926859

RESUMO

The role of the mTOR inhibitor, rapamycin, in regulation of adiposity remains controversial. Here, we evaluate mTOR signaling in lipid metabolism in adipose tissues of Lmna-/- mice, a mouse model for dilated cardiomyopathy and muscular dystrophy. Lifespan extension by rapamycin is associated with increased body weight and fat content, two phenotypes we link to suppression of elevated energy expenditure. In both white and brown adipose tissue of Lmna-/- mice, we find that rapamycin inhibits mTORC1 but not mTORC2, leading to suppression of elevated lipolysis and restoration of thermogenic protein UCP1 levels, respectively. The short lifespan and metabolic phenotypes of Lmna-/- mice can be partially rescued by maintaining mice at thermoneutrality. Together, our findings indicate that altered mTOR signaling in Lmna-/- mice leads to a lipodystrophic phenotype that can be rescued with rapamycin, highlighting the effect of loss of adipose tissue in Lmna-/- mice and the consequences of altered mTOR signaling.


Assuntos
Tecido Adiposo/metabolismo , Lamina Tipo A/genética , Serina-Treonina Quinases TOR/genética , Termogênese/genética , Proteína Desacopladora 1/genética , Animais , Lamina Tipo A/metabolismo , Lipólise/efeitos dos fármacos , Alvo Mecanístico do Complexo 1 de Rapamicina/genética , Alvo Mecanístico do Complexo 2 de Rapamicina/genética , Camundongos , Sirolimo/administração & dosagem , Serina-Treonina Quinases TOR/metabolismo , Proteína Desacopladora 1/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...