Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Rep ; 14(1): 13456, 2024 06 12.
Artigo em Inglês | MEDLINE | ID: mdl-38862558

RESUMO

The agonist-antagonist myoneural interface (AMI) is an amputation surgery that preserves sensorimotor signaling mechanisms of the central-peripheral nervous systems. Our first neuroimaging study investigating AMI subjects conducted by Srinivasan et al. (2020) focused on task-based neural signatures, and showed evidence of proprioceptive feedback to the central nervous system. The study of resting state neural activity helps non-invasively characterize the neural patterns that prime task response. In this study on resting state functional magnetic resonance imaging in AMI subjects, we compared functional connectivity in patients with transtibial AMI (n = 12) and traditional (n = 7) amputations (TA). To test our hypothesis that we would find significant neurophysiological differences between AMI and TA subjects, we performed a whole-brain exploratory analysis to identify a seed region; namely, we conducted ANOVA, followed by t-test statistics to locate a seed in the salience network. Then, we implemented a seed-based connectivity analysis to gather cluster-level inferences contrasting our subject groups. We show evidence supporting our hypothesis that the AMI surgery induces functional network reorganization resulting in a neural configuration that significantly differs from the neural configuration after TA surgery. AMI subjects show significantly less coupling with regions functionally dedicated to selecting where to focus attention when it comes to salient stimuli. Our findings provide researchers and clinicians with a critical mechanistic understanding of the effect of AMI amputation on brain networks at rest, which has promising implications for improved neurorehabilitation and prosthetic control.


Assuntos
Amputação Cirúrgica , Imageamento por Ressonância Magnética , Humanos , Masculino , Feminino , Adulto , Pessoa de Meia-Idade , Descanso/fisiologia , Tíbia/cirurgia , Tíbia/fisiopatologia , Encéfalo/fisiopatologia , Encéfalo/diagnóstico por imagem , Encéfalo/fisiologia , Neurofisiologia/métodos , Amputados/reabilitação , Mapeamento Encefálico/métodos
2.
Res Sq ; 2023 Feb 09.
Artigo em Inglês | MEDLINE | ID: mdl-36798194

RESUMO

The agonist-antagonist myoneural interface (AMI) is a novel amputation surgery that preserves sensorimotor signaling mechanisms of the central-peripheral nervous systems. Our first neuroimaging study investigating AMI subjects (Srinivasan et al., Sci. Transl. Med. 2020) focused on task-based neural signatures, and showed evidence of proprioceptive feedback to the central nervous system. The study of resting state neural activity helps non-invasively characterize the neural patterns that prime task response. In this first study on resting state fMRI in AMI subjects, we compared resting state functional connectivity in patients with transtibial AMI (n=12) and traditional (n=7) amputations, as well as biologically intact control subjects (n=10). We hypothesized that the AMI surgery will induce functional network reorganization that significantly differs from the traditional amputation surgery and also more closely resembles the neural configuration of controls. We found AMI subjects to have lower connectivity with salience and motor seed regions compared to traditional amputees. Additionally, with connections affected in traditional amputees, AMI subjects exhibited a connectivity pattern more closely resembling controls. Lastly, sensorimotor connectivity in amputee cohorts was significantly associated with phantom sensation (R2=0.7, p=0.0008). These findings provide researchers and clinicians with a critical mechanistic understanding of the effects of the AMI surgery on the brain at rest, spearheading future research towards improved prosthetic control and embodiment.

3.
Heart Rhythm ; 14(2): 273-281, 2017 02.
Artigo em Inglês | MEDLINE | ID: mdl-27670628

RESUMO

BACKGROUND: The peculiarities of transverse tubule (T-tubule) morphology and distribution in the atrium-and how they contribute to excitation-contraction coupling-are just beginning to be understood. OBJECTIVES: The objectives of this study were to determine T-tubule density in the intact, live right and left atria in a large animal and to determine intraregional differences in T-tubule organization within each atrium. METHODS: Using confocal microscopy, T-tubules were imaged in both atria in intact, Langendorf-perfused normal dog hearts loaded with di-4-ANEPPS. T-tubules were imaged in large populations of myocytes from the endocardial surface of each atrium. Computerized data analysis was performed using a new MatLab (Mathworks, Natick, MA) routine, AutoTT. RESULTS: There was a large percentage of myocytes that had no T-tubules in both atria with a higher percentage in the right atrium (25.1%) than in the left atrium (12.5%) (P < .02). The density of transverse and longitudinal T-tubule elements was low in cells that did contain T-tubules, but there were no significant differences in density between the left atrial appendage, the pulmonary vein-posterior left atrium, the right atrial appendage, and the right atrial free wall. In contrast, there were significant differences in sarcomere spacing and cell width between different regions of the atria. CONCLUSION: There is a sparse T-tubule network in atrial myocytes throughout both dog atria, with significant numbers of myocytes in both atria-the right atrium more so than the left atrium-having no T-tubules at all. These regional differences in T-tubule distribution, along with differences in cell width and sarcomere spacing, may have implications for the emergence of substrate for atrial fibrillation.


Assuntos
Acoplamento Excitação-Contração/fisiologia , Átrios do Coração , Miócitos Cardíacos/ultraestrutura , Animais , Cães , Processamento Eletrônico de Dados , Átrios do Coração/patologia , Átrios do Coração/ultraestrutura , Microscopia Confocal/métodos , Projetos de Pesquisa , Sarcômeros/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...